Non-Research Tips for Information Science Researchers (Summer 2024)

May 1, 2024
Week 4: Tables and plots

https://non-research-tips.github.io/2024

Yusuke Matsui (UTokyo)

Schedule

Date (2024)	Contents	Presented by
Week 1, Apr 10	Introduction. Review of fundamental concepts	Yusuke, Koya, Yuki, Jun
Week 2, Apr 17	Equations and pseudo-codes	Yusuke Matsui
Week 3, Apr 24	Presentation	Koya Narumi
Week 4, May 1	Tables and plots	Yusuke Matsui
Week 5, May 8	Figures	Koya Narumi
Week 6, May 22	Videos	Koya Narumi
Week 7, May 29	Invited Talk 1	Dr. Yoshiaki Bando (AIST)
Week 8, June 5	Invited Talk 2	Prof. Katie Seaborn (Tokyo Tech)
Week 9, June 12	GitHub in depth	Yusuke Matsui
Week 10, June 19	Automation of research and research dissemination (Web, Cloud, CI/CD)	Jun Kato
Week 11, June 26	Research community	Jun Kato
Week 12, July 3	3DCG illustrations	Yuki Koyama
Week 13, July 10	Final presentations	-

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Author

> My current table appears unprofessional. I want to create a more visually appealing table...

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Author

My current table appears unprofessional. I want to create a more visually appealing table...

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

The table looks better! I often find this kinds of tables in top-conference papers.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Author

My current table appears unprofessional. I want to create a more visually appealing table...

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Reviewer 2

The table looks better! I often find this kinds of tables in top-conference papers.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

1. Structure your table. 2. Use the booktabs package.

Name He Lebron James	113	
Anthony Pavis	208	115
208		

Author
Whenever I display data, I always use a bar graph, but I feel like it doesn't provide enough information.

Author
Whenever I display data, I always use a bar graph, but I feel like it doesn't provide enough information.
AlexNet

VGG

DenseNet EfficientNet

Box plots seem better! Now, I can see that DenseNet's scores are scattered.

Author
Whenever I display data, I always use a bar graph, but I feel like it doesn't provide enough information.

AlexNet

Good job!

Box plots seem better! Now, I can see that DenseNet's scores are scattered.

Author
Whenever I display data, I always use it doesn't on.

Tips for good plots

Box plots seem better! Now, I can see that DenseNet's scores are scattered.

Reference

booktabs

$>$ S．Fear，＂Publication quality tables in LaTeX＂，Official documentation for booktabs in CTAN， 2020. http：／／mirrors．ctan．org／macros／latex／contrib／booktabs／booktabs．pdf
＞M．Püschel，＂Small Guide to Making Nice Tables＂，https：／／people．inf．ethz．ch／markusp／teaching／guides／guide－tables．pdf Introduction of booktabs（I was inspired by this document．）

Boxplot

＞M．Streit and N．Gehlenborg，＂Bar charts and box plots＂，Nature Methods， 2014. https：／／www．nature．com／articles／nmeth． 2807

The original document for this lecture

＞松井勇佑，＂とにかくbooktabsを使おう＂，GitHub，2022．https：／／github．com／mti－lab／use booktabs anyway

Powerpoint?

$>$ The contents of today's lecture are for rendering tables by TeX.
> When you want to render tables in Powerpoint, you can imitate the TeX's one, like:

	Name	Height (cm)	Weight (kg)
	LeBron James	206	113
But I don't like	Anthony Davis	208	115
this space...			

$>$ Or you can do it in other ways, like:

Example	Meaning
$a \in[2,7]$	$2 \leq a \leq 7 \quad$ More informative than $a \in \mathbb{R}$
$a \in(2,7)$	$2<a<7$
$a \in[2,7)$	$2 \leq a<7$
$a \in\{2,7\}$	$a=2$ or $a=7$
$a \in\{2, \ldots, 7\}$	If naturally interpreted, $a=2$ or $a=3$ or \ldots or $a=7$.

Disclaimer

$>$ The contents of today's lecture are based on Matsui's rule of thumb.
$>$ Please consider the contents as guidelines and apply them to your field at your discretion.
> If you have better tips, please always let me know!
$>$ I would like to offer you helpful tips and enhance the quality of your papers. (All of you!)

Question

Please briefly describe
the paper's
contributions, and list its positive and its positive points.

The authors start from a small (16 centroids The authors
local descriptor x by descending a list (aka inv to select the subtree. A pol k-means to alternalive to the hierarchical k-means
\therefore bad method, flawed experiments
Definitely Reiect

Can we systematically overcome the typical mistakes that beginners make?

I have been thinking about such a thing for more than a decade ...

The review for my first
CVPR submission (2013)

Tables

> Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart
> Misc

Plots

> Basics
> Bar chart to box plot
> Control parameter

Tables

> Basics
> Row-oriented structure
> Row grouping
> Row hierarchization

- Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot
> Control parameter
> Misc

Basics

> Follow the 5 steps below.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

```
¥begin{tabular}{|c|c|c|} ¥hline
    Name & Height (cm) & Weight (kg) ¥¥ ¥hline
    LeBron James & 206 & 113 ¥¥ ¥hline
    Anthony Davis & 208 & 115 ¥¥ ¥hline
¥end{tabular}
```

```
¥usepackage{booktabs}
¥begin{tabular}{@{}lll@{}} ¥toprule
    Name & Height (cm) & Weight (kg) ¥¥ ¥midrule
    LeBron James & 206 & 113 ¥¥ 
    Anthony Davis & 208 & 115 ¥¥ ¥bottomrule
¥end{tabular}
```


Basics

> Follow the 5 steps below.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Step 2: Delete all vertical lines.
$>$ i.e., $\{|c| c|c|\} \rightarrow\{c c c\}$
> If you table is well structured, you don't need vertical lines.
$>$ If you think you need vertical lines, I recommend splitting the table into smaller ones

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

```
¥usepackage{booktabs}
¥begin{tabular}{@{}lll@{}} ¥toprule
    Name & Height (cm) & Weight (kg) ¥¥ ¥midrule
    LeBron James & 206 & 113 ¥¥ 
    Anthony Davis & 208 & 115 ¥¥ ¥bottomrule
¥end{tabular}
```

Step 3: Align left.
$>$ i.e., $\{\mathrm{ccc}\} \rightarrow\{111\}$
$>$ Left-align is beautiful (Remember "invisible lines" in Week 3!)
$>$ If you have problems with left alignment, try right or center alignment.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

```
¥begin{tabular}{\, c|c|c|
    Name & Height (cm) & Weight (kg) ¥¥ ¥hline
    LeBron James & 206 & 113 ¥¥ ¥hline
    Anthony Davis & 208 & 115 ¥¥ ¥hline
¥end{tabular}
```

```
¥usepackage{booktabs}
```

¥usepackage{booktabs}
¥begin{tabular}{@{111@{}} ¥toprule
¥begin{tabular}{@{111@{}} ¥toprule
Name \& Height (cm) \& Weight (kg) ¥¥ ¥midrule
Name \& Height (cm) \& Weight (kg) ¥¥ ¥midrule
LeBron James \& 206 \& 113 ¥¥
LeBron James \& 206 \& 113 ¥¥
Anthony Davis \& 208 \& 115 ¥¥ ¥bottomrule
Anthony Davis \& 208 \& 115 ¥¥ ¥bottomrule
¥end{tabular}

```
¥end{tabular}
```


Basics

> Follow the 5 steps below.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

¥begin\{tabular\}\{|c|c|c|\} ¥hline
Name \& Height (cm) \& Weight (kg) $¥ ¥ ¥$ ¥hline Step 4: Put a magical spacer symbols, "@\{\}" $>$ i.e., \{111\} \rightarrow \{@\{\}111@\{\}\}
$>$ This eliminates excess spaces.
> Many papers forget this.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

```
¥usepackage{booktabs}
¥begin{tabular}(@{})@@{})}¥\mathrm{ toprule
    Name & Height (cm) &Weight (kg) ¥¥ ¥midrule
    LeBron James & 206 & 113 ¥¥ 
    Anthony Davis & 208 & 115 ¥¥ ¥bottomrule
¥end{tabular}
```


Basics

W/O "@\{\}"		
Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

	W/ 'œ@ $@$ "	
Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

No spaces. Beautiful! ©
Remember "invisible lines" in Week 3!

Anthony Davis \& 208 \& 115 ¥¥ $¥ b o t t o m r u l e$
¥end\{tabular\}

```
Step 5: Use "top/mid/bottomrule"
> i.e.,
    \checkmark ~ T h e ~ t o p ~ ¥ h l i n e ~ m ~ ¥ t o p r u l e
    \checkmark ~ T h e ~ n e x t ~ ¥ h l i n e ~ m ~ ¥ m i d r u l e ~
    \checkmark ~ T h e ~ b o t t o m ~ ¥ h l i n e ~ m ~ ¥ b o t t o m r u l e
    \checkmark ~ O t h e r ~ ¥ h l i n e s ~ = > ~ D e l e t e ! ~
\(>\) Well-structured tables require horizontal lines just a bit.
```


n) \& Weight (kg) va ¥hline

206 \& $113 ¥ ¥$ ¥hline

```
\begin{tabular}{lll}
\hline Name & Height (cm) & Weight (kg) \\
\hline LeBron James & 206 & 113 \\
Anthony Davis & 208 & 115 \\
\hline
\end{tabular}
¥usepackage\{booktabs\}
¥begin\{tabular\}\{@\{\}11l@\{\}\} ¥toprule
Name \& Height (cm) \& Weight (k.g.)..\#¥. \&midrule
LeBron James \& 206 \& \(113 ¥ ¥\) !
Anthony Davis \& 208 \& 115
¥b゙ottoimirule
¥end\{tabular\}
```


Basics

> Follow the 5 steps below.

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

ミbegin $\{$ tabular $\}\{|c| c|c|\} ¥ h l i n e$ Name \& Height (cm) \& Weigit (kg) wnline LeBron James \& 206 \& 113 Anthony Davis \& 208 \& 115
 ¥hline kend\{tabular\}

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

[^0]¥toprule

Basics

> You can always apply these 5 steps, and your table will be much more beautiful!

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

```
¥begin{tabular}{|c|c|c|} ¥hline
    Name & Height (cm) & Weight (kg) ¥¥ ¥hline
    LeBron James & 206 & 113 ¥¥ ¥hline
    Anthony Davis & 208 & 115 ¥¥ ¥hline
¥end{tabular}
```

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115

```
#usepackage{booktabs}
¥begin{tabular}{@{}lll@{}} ¥toprule
    Name & Height (cm) & Weight (kg) ¥¥ ¥midrule
    LeBron James & 206 & 113 ¥¥ 
    Anthony Davis & 208 & 115 ¥¥ ¥bottomrule
¥end{tabular}
```


Tables

> Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot > Control parameter

Row-oriented structure

$>$ A table should be a stack of rows, i.e., row-oriented.
> The best structure: "header" + "row1" + "row2" + ...

Header	Name	Height (cm)	Weight (kg)	Each row should be semantically same level i.e., instances (rows) of the same class (header)
Row1	LeBron James	206	113	
Row2	Anthony Davis	208	115	

> Each row should be semantically interchangeable.

Name	Height (cm)	Weight (kg)		Usually, rows are sorted by some criteria.
	Anthony Davis	208	115	113
LeBron James	206		Yet, rows should be interchangeable.	

Row-oriented structure

$>$ A table should be a stack of rows, i.e., row-oriented.
$>$ The best structure: "header" + "row1" + "row2" + ...

Header	Name	Height (cm)	Weight (kg)	Each row should be semantically same level i.e., instances (rows) of the same class (header)	
Row1	LeBron James	206	113		
Row2	Anthony Davis	208	115		
Each row should be semantically			```class Person: def __init__(self, name, height, weight): self.name = name self.height = height self.weight = weight row1 = Person('LeBron James', 206, 113) row2 = Person('Anthony Davis', 208, 115)```		
	Anthony Davis	208			
	LeBron James	206	113	interchangeable.	

Row-oriented structure

> For each column,
\checkmark The header defines the type, i.e., "int".
\checkmark Each row shows the value, i.e., "34".
$>$ Seems obvious? But it's not easy to strictly follow this principal.

Daus_nriantad ctructura

$>$ From S. Ren+, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", TPAMI 2017 (30K+ citation paper)
$>$ Object detection papers do not follow this principal (because \#class is ~ 20 and can fit the paper, thus it's possible to write everything one line).
$>$ One may restructure this table clearer as we'll show later, but it requires more spaces. $>$ Everything up to the situation!

Exceptional cases: e.g., average values

$>$ There are several exceptions, such as a row of average values
$>$ Such row is a special and cannot be swapped to other rows (usually placed at the bottom).

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115
D'Angelo Russell	193	88
Average	202	105.3

Name	Height (cm)	Weight (kg)
LeBron James	206	113
Anthony Davis	208	115
D'Angelo Russell	193	88
Average	202	105.3

$>$ Creating tables: Following the row-oriented structure as much as possible while aiming for the clearest presentation.
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Tables

> Basics
> Row-oriented structure
> Row grouping
> Row hierarchization

Plots

$>$ Basics
> Bar chart to box plot
> Control parameter
> Misc

Row grouping

> You can group rows to improve the readability.

A good table. Rows are interchangeable.

Method
$\left\{\begin{array}{lll}\hline & \text { Runtime (ms) } & \text { Accuracy } \\ \hline \text { XYZ } & 16 & 0.32 \\ \text { XYZ } & 32 & 0.61 \\ \left\{\begin{array}{lll}\text { Ours } & 9 & 0.47 \\ \text { Ours } & 18 & 0.99\end{array}\right. & 0.21 \\ \hline\end{array}\right.$

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

However, there are repetitive descriptions, which makes the table unnecessarily wordy. $\mathscr{O}_{\circ}^{\circ}$

Row grouping

> You can group rows to improve the readability.

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
XYZ	32	0.61	0.44
Ours	9	0.47	0.26
Ours	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

$>$ You can simply group some rows. \because
> Delete unnecessary descriptions.

Row grouping

> You can group rows to improve the readability.
$>$ You can further draw a $¥ m i d r u l e$

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
XYZ	32	0.61	0.44
Ours	9	0.47	0.26
Ours	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
	9	0.47	0.26
Ours	18	0.99	0.77

$>$ You can combine rows if you want.
$>$ ¥multirow

Row grouping

$>$ You can combine rows if you want. $>$ ¥multirow

Row grouping

> Many prefer the third one.
$>$ Personally speaking, the second one is straightforward enough in many cases (simpler is better).
> Choose what you like!

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
XYZ	32	0.61	0.44
Ours	9	0.47	0.26
Ours	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

Method	k	Runtime (ms)	Accuracy
XYZ	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

d

Multiple-level grouping

> You can group rows recursively.

Nearest Station	Store Name	Item	Price (JPY)
Hongo-Sanchome	Umite	Natsu-Ramen	700
		Maze Men X	850
	IBASA	Ramen	700
Todai-mae	Yojinmen	Cold Ramen	650
		Ramen	700
		800	

Tables

$>$ Basics
> Row-oriented structure
$>$ Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

$>$ Basics
> Bar chart to box plot
> Control parameter
> Misc

Row hierarchization

> Row hierarchization = Deleting a row + Indentation
\checkmark In other words, horizontally-long \leftrightarrow vertically-long $>$ Row hierarchization may make a table easier to read.

Item	Type	Price $(¥)$	Floor
Pork	Meat	300	2
Beef	Meat	500	2
Tomato	Vegetables	100	3
Corn	Vegetables	200	3
Cabbage	Vegetables	30	4

Item	Type	Price $(¥)$	Floor
Pork	Meat	300	2
Beef		500	2
Tomato	Vegetables	100	3
Corn		200	3
Cabbage		30	4

A good table. Rows are interchangeable.

Row hierarchization

> Row hierarchization = Deleting a row + Indentation
\checkmark In other words, horizontally-long \leftrightarrow vertically-long $>$ Row hierarchization may make a table easier to read.

Item	Type	Price $(¥)$	Floor
Pork	Meat	300	2
Beef	Meat	500	2
Tomato	Vegetables	100	3
Corn	Vegetables	200	3
Cabbage	Vegetables	30	4

Item	Type	Price $(¥)$	Floor
Pork	Meat	300	2
Beef		500	2
Tomato	Vegetables	100	3
Corn		200	3
Cabbage		30	4

Row grouping. Easier to read. Good.

Row hierarchization

> Row hierarchization = Deleting a row + Indentation
\checkmark In other words, horizontally-long \leftrightarrow vertically-long
$>$ Row hierarchization may make a table easier to read.

Item	Type	Price $(¥)$	Floor
Pork	Meat	300	2
Beef	Meat	500	2
Tomato	Vegetables	100	3
Corn	Vegetables	200	3
Cabbage	Vegetables	30	4

Item	Type	Price $(¥)$	Floor
Pork	Meat	300	2
Beef			2
Tomato	Vegetables	100	3
Corn		200	3
Cabbage		30	4

Item	Price (¥)	Floor
Meat		
Pork	300	2
Beef	500	2
Vegetables		
Tomato	100	3
Corn	200	3
Cabbage	30	4

Indentation (add white spaces in TeX)
 Row hierarchization. In this case, this one is also good.

Indentation (add white spaces in TeX)

Row hierarchization. In this case, this one is also good.

Row hierarchization

> Row hierarchization = Deleting a row + Indentation
\checkmark In other words, horizontally-long \leftrightarrow vertically-long
$>$ Row hierarchization may make a table easier to read.

Item	Type	Price ($¥$)	Floor	Item	Type	Price ($¥$)	Floor	ItemMeat	Price (¥)	Floor
Pork	Meat	300	2	Pork	Meat	300	2	Pork	300	2
Beef	Meat	500	2	Beef		500	2	Beef	500	2
Tomato	Vegetables	100	3	Tomato	Vegetables	100	3	Vegetables		
Corn	Vegetables	200	3	Corn		200	3	Tomato	100	3
Cabbage	Vegetables	30	4	Cabbage		30	4	Corn	200	3
								Cabbage	30	4

$>$ Row-grouping and row-hierarchization are just for visualization
> Semantically, one should be able to convert the table to the original "stack of rows" from easily.

Tables

> Basics
> Row-oriented structure
$>$ Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot
> Control parameter
> Misc

Column hierarchization

> Columns cannot be grouped. But can be hierarchically summarized.
$>$ Ok. But there are multiple "error"s.
$>$ Not only wordy, but also requires spaces.

Method	Min. error	Avg. error	Max. error
Isomap	0.23	0.44	0.92
LLE	0.10	0.73	1.82

		Error		
Column hierarchization	Method	Min.	Avg.	Max.
	Isomap	0.23	0.44	0.92
	LLE	0.10	0.73	1.82

$>$ Hierarchize "error".
$>$ No redundant information. Good!
$>$ Again, this is for visualization. We can always back to the original form.

Column hierarchization

Multiple column-hierarchization

> You can hierarchize columns multiple times.
With hierarchization, one needs to write a unit just once, making the table shorter

Prefecture	Temperature (${ }^{\circ} \mathrm{C}$)			Precipitation (mm)		Access		Density (persons $/ \mathrm{km}^{2}$)
	Max.	Avg.	Min.	August	December	By shinkansen	By plane	
Ishikawa	32	20	-1	179.8	304.7	\checkmark	\checkmark	267
Shizuoka	27	23	5	250.9	63.0	\checkmark	\checkmark	461
Okinawa	33	28	15	175.4	104.4		\checkmark	643

It's ok to mix usual columns and hierarchized columns

Multiple column-hierarchization

 Prefecture \& Max. \& Avg. \& Min. \& August \& December \& By shinkansen \& By plane \& Density (persons/\$\{km\}^2\$) $¥ \neq ¥$ midrule
Ishikawa \& 32 \& 20 \& -1 \& 179.8 \& 304.7 \& $¥$ checkmark \& $¥$ checkmark \& $267 ¥ ¥$
Ishikawa \& 32 \& 23 \& 5 \& 250.9 \& 63.0 \& $¥$ checkmark \& $¥$ checkmark \& $461 ¥ ¥$
Okinawa \& 33 \& 28 \& 15 \& 175.4 \& 104.4 \& \& $¥$ checkmark \& $643 ¥ ¥$ ¥bottomrule
¥end\{tabular\}
vVILI IIErdrcrilZaliOr, Orie rieeds lU Write a unit just once, making the table shorter

Prefecture	Temperature (${ }^{\circ} \mathrm{C}$)			Precipitation (mm)		Access		Density (persons $/ \mathrm{km}^{2}$)
	Max.	Avg.	Min.	August	December	By shinkansen	By plane	
Ishikawa	32	20	-1	179.8	304.7	\checkmark	\checkmark	267
Shizuoka	27	23	5	250.9	63.0	\checkmark	\checkmark	461
Okinawa	33	28	15	175.4	104.4		\checkmark	643

It's ok to mix usual columns and hierarchized columns

Tables

$>$ Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot
> Control parameter
$>$ Misc

Partial horizontal line (cmidrule)

> Partial horizontal line (cmidrule) has two parameters.
\checkmark Trims the ends of the line?: " 1 " (left) or " r " (right) or "lr" (both)
\checkmark Range (e.g., "2-4")
> By setting these params correctly, the table becomes much beautiful.

Partial horizontal line (cmidrule)

		error													
Method		Avg.	Max. ${ }^{\text {ben }}$	Method	Min.	Avg.	Max.	Method	Min.	Avg.	Max.	Method	Min.	Avg.	Max
Isomap	0.23	0.44	0.92												
LLE	0.10	0.73	1.82												
cmidrule() $\{2-4\}$					cmidrule(1) $\{2-4\}$				cmidrule(r) $\{2-4\}$				cmidrule(lr) $\{2-4\}$		
					Trim left				Trim right				Trim left and right		

Small differences... But god is in the details...

Partial horizontal line (cmidrule)

w/ proper params

Prefecture	Temperature (${ }^{\circ} \mathrm{C}$)			Precipitation (mm)		Access		Density (persons/ km^{2})
	Max.	Avg.	Min.	August	December	By shinkansen	By plane	
Ishikawa	32	20	-1	179.8	304.7	\checkmark	\checkmark	267
Shizuoka	27	23	5	250.9	63.0	\checkmark	\checkmark	461
Okinawa	33	28	15	175.4	104.4		\checkmark	643

w/o proper params

Prefecture	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$			Precipitation (mm)		Access		Density (persons/ km^{2})
	Max.	Avg.	Min.	August	December	By shinkansen	By plane	
Ishikawa	32	20	-1	179.8	304.7	\checkmark	\checkmark	267
Shizuoka	27	23	5	250.9	63.0	\checkmark	\checkmark	461
Okinawa	33	28	15	175.4	104.4		\checkmark	643

Tables

$>$ Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
> Column hierarchization
$>$ Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot
> Control parameter
> Misc

Column to row

> This is not recommended, but moving a column to a row often makes the table clearer. Consider the following typical table.

Method	Dataset	Runtime (ms)
k-means	MNIST	10.2
	ImageNet	45.3
	Places	57.1
Ours	MNIST	8.3
	ImageNet	39.1
	Places	82.3

$>$ This table is good (rows are interchangeable), but... \checkmark If we compare methods in the same dataset, the values are far away (e.g., on MNIST, k-means (10.2) vs Ours (8.3)).
With more methods/datasets, the table becomes more vertical.

Column to row

> This is not recommended, but moving a column to a row often makes the table clearer. Consider the following typical table.

| Method | Dataset | Runtime (ms) |
| :--- | :--- | :--- | :--- |
| k-means | MNIST | 10.2 |
| | ImageNet | 45.3 |
| | Places | 57.1 |
| Ours | MNIST | 8.3 |
| | ImageNet | 39.1 |
| | Places | 82.3 |

> This table is good (rows are interchangeable), but... \checkmark If we compare methods in the same dataset, the values are far away (e.g., on MNIST, k-means (10.2) vs Ours (8.3)).
With more methods/datasets, the table becomes more vertical.

Column to row

> This is not recommended, but moving a column to a row often makes the table clearer. Consider the following typical table.

Method	Dataset	Runtime (ms)
k-means	MNIST	10.2
	ImageNet	45.3
	Places	57.1
Ours	MNIST	8.3
	ImageNet	39.1
	Places	82.3

$>$ This table is good (rows are interchangeable), but...
\checkmark If we compare methods in the same dataset, the values are far away (e.g., on MNIST, k-means (10.2) vs Ours (8.3)).
\checkmark With more methods/datasets, the table becomes more vertical.

Column to row

Column to row

Column to row

> Seems clear. But there's no descriptions for "Dataset"
> This approach works only if it's acceptable not to show "Dataset"

Column to row

> Seems perfect? But there's no description for "Runtime".
> You need to write "This table reports runtime (ms)" in the caption.
$>$ If a table consists of only one type of value, you may clarify the table by removing the type in the header and explaining the type in the caption.

Column to row

> Seems perfect? But there's no description for "Runtime".
$>$ You need to write "This table reports runtime (ms)" in the caption.
$>$ If a table consists of only one type of value, you may clarify the table by removing the type in the header and explaining the type in the caption.

Column to row

$>$ The original cause is that there are two factors to focus (Method and Dataset).
$>$ If there are two factors to focus, the table would be "matrix-like".
$>$ In this case, plotting may be better (you can further improve this by box-plot!).

Tables

$>$ Basics
> Row-oriented structure
$>$ Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot
> Control parameter
$>$ Misc

Flowchart

> When you have trouble creating tables, then...

1. Break up the table until it becomes the "good" table (e.g., satisfying stack-of-rows principal). It is OK if it is very vertically long.
2. Repeat the "row grouping" for the most important column. Do "row hierarchization" as needed.
3. Perform "column grouping" as necessary.
4. If it still does not fit, do "move a column to a row" and then do "row hierarchization". Delete redundant descriptions.
5. If it still does not fit well, consider using a plot.

Tables

$>$ Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Bar chart to box plot
$>$ Control parameter
> Misc

Basics

$>$ Three basic plots; line chart, box plot (bar chart), and scatter plot
$>$ Try these basic plots first. In many cases, that will suffice.
> Avoid using overly complex/sophisticated plots, as reviewers may have difficulty understanding them.

Line chart

Box plot

Scatter plot

Basics

> Three basic plots; line chart, box plot (bar chart), and scatter plot
$>$ There exist discrete labels. (x-axis)
$>$ For each label, several observations. (y-axis) es, that will suffice.
ted plot $>$ Several 2D instances
mave uniticuily uliuerso

Line chart

IETI.

Box plot

Scatter plot
> One control parameter (a continuous value, not discrete labels).
$>$ Compare several functions (lines) of the parameter.

Basics

The font size should be large! Ideally, the same size as the main text.

Tables

$>$ Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

> Basics
> Bar chart to box plot > Control parameter
$>$ Misc

Bar chart to box plot

$>$ A bar chart is the first choice, however, \checkmark A bar chart with error bars is basically better.
\checkmark A box plot is further better.
$>$ Considering the following observations.
Accuracy of AlexNet
$\left[\begin{array}{llllllllllllllllll}0.14 & 0.06 & 0.05 & 0.11 & 0.14 & 0.08 & 0.2 & 0.14 & 0.1 & 0.08 & 0.07 & 0.15 & 0.09 & 0.01 & 0.08 & 0.15 & 0.04 & 0.04 \\ 0.11 & 0.11\end{array}\right]$
Accuracy of VGG

```
[0.06 0.08 0.07 0.06 0.07 0.03 0.04 0.02 0.03 0.06 0.01 0.04 0.04 0.05 0.04 0.03 0.04 0.09 0.09 0.05]
```

Accuracy of ResNet
$\left[\begin{array}{llllllllllllllllll}0.32 & 0.06 & 0.16 & 0.22 & 0.45 & 0.13 & 0.25 & 0.51 & 0.27 & 0.32 & 0.06 & 0.43 & 0.31 & 0.28 & 0.18 & 0.16 & 0.22 & 0.35\end{array} 0.46 \quad 0.27\right]$
Accuracy of DenseNet
$\left[\begin{array}{lllllllllllllllllll}0.42 & 0.36 & 0.39 & 0.43 & 0.55 & 0 & 0.49 & 0.12 & 0.08 & 0.35 & 0.01 & 0.58 & 0.39 & 0.46 & -0.05 & 0.37 & 0.34 & 0.06 & 0.05\end{array} 0.44\right]$
Accuracy of EfficientNet
$\left[\begin{array}{llllllllllllllllllll}0.1 & 0.21 & 0.17 & 0.12 & 0.28 & 0.25 & 0.11 & 0.01 & 0.09 & 0.12 & 0.21 & 0.3 & 0.11 & 0.23 & 0.18 & 0.21 & 0.05 & 0.12 & 0.07 & 0.1\end{array}\right]$

Bar chart to box plot

$>$ A bar chart is the first choice, however, \checkmark A bar chart with error bars is basically better.
\checkmark A box plot is further better.
$>$ Considering the following observations.
Accuracy of AlexNet
$\left[\begin{array}{llllll}0.14 & 0.06 & 0.05 & 0.11 & 0.14 & 0.2\end{array}\right.$
Accuracy of VGG $\left[\begin{array}{lllllll}0.06 & 0.08 & 0.07 & 0.06 & 0.07 & 0.03 & 0.04\end{array}\right.$
$>$ Comparison over the discrete labels (methods). So we don't use a line chart.
$>$ Let's consider a bar chart first.
Accuracy of ResNet $\left[\begin{array}{llllllllllllllllll}0.32 & 0.06 & 0.16 & 0.22 & 0.45 & 0.13 & 0.25 & 0.51 & 0.27 & 0.32 & 0.06 & 0.43 & 0.31 & 0.28 & 0.18 & 0.16 & 0.22 & 0.35\end{array} 0.46 \quad 0.27\right]$

Accuracy of DenseNet
$\left[\begin{array}{llllllllllllllllll}0.42 & 0.36 & 0.39 & 0.43 & 0.55 & 0 & 0.49 & 0.12 & 0.08 & 0.35 & 0.01 & 0.58 & 0.39 & 0.46 & -0.05 & 0.37 & 0.34 & 0.06 \\ 0.05 & 0.44]\end{array}\right.$
Accuracy of EfficientNet
$\left[\begin{array}{llllllllllllllllllll}0.1 & 0.21 & 0.17 & 0.12 & 0.28 & 0.25 & 0.11 & 0.01 & 0.09 & 0.12 & 0.21 & 0.3 & 0.11 & 0.23 & 0.18 & 0.21 & 0.05 & 0.12 & 0.07 & 0.1\end{array}\right]$

Bar chart to box plot

Comparison of the average values. That's it. Not so much informative.

$>$ By a box plot, we can see more information with the same space!

> > With error bars, we can see the variation of values.
> > More informative with the same space (area)

Bar chart to box plot

Comparison of the average values. That's it. Not so much informative.

By a box plot, we can see more information with the same space!

$>$ With error bars, we can see the variation of values.
$>$ More informative with the same space (area)

Bar chart to box plot

Comparison of the average values. That's it. Not so much informative.
> By a box plot, we can see more information with the same space!

$>$ With error bars, we can see the variation of values.
> More informative with the same space (area)

Box plot

Box plot

M. Streit and N. Gehlenborg, "Bar charts and box plots", Nature Methods, 2014. https://www.nature.com/articles/nmeth. 2807

Violin plot?

Can be found in the seaborn package

\Rightarrow A violin plot is considered as a more sophisticated visualization.
$>$ We can visualize the distribution itself.
$>$ I personally don't recommend a violin plot much.

Violin plot: bad points

$>$ A violin plot automatically generates (interpolates) the distribution.
$>$ It is dangerous, especially when \#data is not enough.

Data: [1.0, 2.0]

> The reviewers may not understand the violin plot anyway.

Violin plot: good points

> If the data is bi-modal or multi-modal, a violin plot is the only option. Data: [10.1, 9.9, 10.1, 9.8, 10.2, 10.0, 20.1, 20.2, 20.0, 19.9, 20.1]

Tables

$>$ Basics
> Row-oriented structure
> Row grouping
> Row hierarchization
$>$ Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

$>$ Basics
> Bar chart to box plot > Control parameter
> Misc

Control parameter

> It often happens that we would like to show the two line-plots with the same control parameter.

Control parameter

> It often happens that we would like to show the two line-plots with the same control parameter.
Inverse of runtime. Higher is better.

> HNSW seems more accurate but slower.
$>$ Can we know more information from these?

Control parameter

Control parameter

$>$ Informative plot with a less space!
$>$ Trade-off between the two curves.

Depending on the context, one may evaluate the curve by AUC (area under the curve)

Runtime of NSG suddenly drops around R@1=0.7

Control parameter

$>$ Informative plot with a less space!
> Trade-off between the two curves.

for $x, y, c t r l$ in zip(xs, ys, ctrls):
plt.annotate(text=f"T=\{ctrl\}", $x y=(x, y)$, xytext=(x, $y+5)$)

Depending on the context, one may evaluate the curve by AUC (area under the curve)

Runtime of NSG suddenly drops around R@1=0.7

Precision-recall curve has the same structure

Tables

$>$ Basics
> Row-oriented structure
$>$ Row grouping
> Row hierarchization
> Column hierarchization
> Partial horizontal line (cmidrule)
> Column to row
> Flowchart

Plots

$>$ Basics
$>$ Bar chart to box plot
> Control parameter
> Misc

Put the grid on a logarithmic graph

Legend

> The order of the methods in the legend should match the lines as much as possible.

Don't use dangerous charts

Pie charts

Radar charts

3D bar charts

■ north
■ south
■ east

- west

Continuous parameter or discrete labels

> Don't draw a line for data of discrete labels.

What should we do to improve our paper?

$>$ Do good research
$\checkmark \bigodot$ Yes, of course! But we know it takes time.
> Improve a writing skill.
\checkmark Y Yes, of course! But we know it takes time.
> Improve English (if you're a non-native English speaker).
$\checkmark \fallingdotseq$ Yes, of course! But we know it takes time.
> Improve equations/tables/plots.
\checkmark This won't take much time - study for a few days and you'll master it. So go ahead and do it!

Schedule

Date (2024)	Contents	Presented by
Week 1, Apr 10	Introduction. Review of fundamental concepts	Yusuke, Koya, Yuki, Jun
Week 2, Apr 17	Equations and pseudo-codes	Yusuke Matsui
Week 3, Apr 24	Presentation	Koya Narumi
Week 4, May 1	Fables and plots	Yusuke Matsui
Week 5, May 8	Figures	Koya Narumi
Week 6, May 22	Videos	Koya Narumi
Week 7, May 29	Invited Talk 1	Dr. Yoshiaki Bando (AIST)
Week 8, June 5	Invited Talk 2	Prof. Katie Seaborn (Tokyo Tech)
Week 9, June 12	GitHub in depth	Yusuke Matsui
Week 10, June 19	Automation of research and research dissemination (Web, Cloud, CI/CD)	Jun Kato (\%)
Week 11, June 26	Research community	Jun Kato (
Week 12, July 3	3DCG illustrations	Yuki Koyama
Week 13, July 10	Final presentations	-

[^0]: $¥$toprule¥usepackage\{booktabs\}¥midrule¥begin\{tabular\}\{@\{\}lll@\{\}\}DeletervHeight(cm)\&Weight(k.g)..¥¥:midruleJeBronJames\&206\&113¥¥!¥bottomrulenyDavis\&208\&115¥bottoimirule$¥$end\{tabular\}undefined

