Non-Research Tips for Information Science Researchers (Summer 2024)

Apr 17, 2024
 Week 2: Equations and pseudo-codes

https://non-research-tips.github.io/2024

Yusuke Matsui (UTokyo)

Schedule

Date (2024)	Contents	Presented by
Week 1, Apr 10	Introduction. Review of fundamental concepts	Yusuke, Koya, Yuki, Jun
Week 2, Apr 17	Equations and pseudo-cod	Yusuke Matsui
Week 3, Apr 24	Presentation	Koya Narumi
Week 4, May 1	Tables and plots	Yusuke Matsui
Week 5, May 8	Figures	Koya Narumi
Week 6, May 22	Videos	Koya Narumi
Week 7, May 29	Invited Talk 1	Dr. Yoshiaki Bando (AIST)
Week 8, June 5	Invited Talk 2	Prof. Katie Seaborn (Tokyo Tech)
Week 9, June 12	GitHub in depth	Yusuke Matsui
Week 10, June 19	Automation of research and research dissemination (Web, Cloud, Cl/CD)	Jun Kato
Week 11, June 26	Research community	Jun Kato
Week 12, July 3	3DCG illustrations	Yuki Koyama
Week 13, July 10	Final presentations	-

The data x is...

It's obvious from the context what x is.

The data x is...

What is x ? A scalar? A vector? Hard to read... Reject!

It's obvious from the context what x is.

What is x ? A scalar? A vector?

 Hard to read... Reject!
The data $\boldsymbol{x} \in \mathbb{R}^{D}$ is...

The date x ls...

Writing a clear, simple, and precise mathematical description is extremely important!

Let me explicitly define x as a D-dim vector.

Ok, \boldsymbol{x} is a D-dim real-valued vector. This author uses a bold alphabet as a vector. Got it. Keep reading...

Equations and pseudo-codes

Introduce the guideline of writing equations. Three important things:

1. Describe precisely what you want to say without making mistakes.

2. Be sufficient, not overly complex or ambiguous.

3. Be understandable even if it is read $\mathbf{1 0}$ years later.

Equations and pseudo-codes

> Main target audience:
\checkmark Researchers in CV, NLP, or related fields.
$>$ Different fields have very different conventions.
\checkmark If the content in this lecture differs from your field's convention, please always follow your field's convention.
\checkmark e.g., I suggest using a bold font for vectors, but your field might never use bold.
"OK" in Japan

Reference

Dictionary for notation

＞D．A．Harville，＂Matrix Algebra From a Statistician＇s Perspective＂，Springer， 2000.
＞D．A．ハーヴィル，＂統計のための行列代数上•下＂，丸善出版， 2012.
＞G．H．Golub and C．F．Van Loan，＂Matrix Computations，4th edition＂，Johns Hopkins University Press， 2012.

Very precise description for Transformer

＞M．Phuong and M．Hutter，＂Formal Algorithms for Transformers＂，arXiv 2022．https：／／arxiv．org／abs／2207．09238

Higher－order tensor

＞T．G．Kolda and B．W．Bader，＂Tensor Decompositions and Applications＂，SIAM Review， 2009.
＞横田達也，＂テンソル分解の基礎と応用＂，MIRUチュートリアル， 2022. https：／／speakerdeck．com／yokotatsuya／tensorufen－jie－falseji－chu－toying－yong－miru2022tiyutoriaru

The original document for this lecture

＞松井勇佑，＂工学系の卒論生のための数式記述入門＂，GitHub，2021．https：／／github．com／mti－lab／math writing

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes

> Basic
$>$ What do you want to express?
> Misc

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?
 > Misc

Basic notation for variables

$>$ Having a good notation for variables is extremely important.
> The most important rule: to be consistent
\checkmark Bold for vectors (recommended):
\square This is $\boldsymbol{x} \in \mathbb{R}^{3} \ldots$ Here, $\boldsymbol{y} \in \mathbb{R}^{3} \ldots$
\checkmark Non-bold for vectors (ok):
\square This is $x \in \mathbb{R}^{3} \ldots$ Here, $y \in \mathbb{R}^{3} \ldots$

\square This is $\boldsymbol{x} \in \mathbb{R}^{3}$... Here, $y \in \mathbb{R}^{3}$...
> If you decide your way, keep following the way throughout the paper.

Basic notation for variables

> For all variables, explicitly write a domain:

```
¥in: "an element of"
```


domain: a set, e.g., \mathbb{R}

x is an element of real numbers
$\rightarrow x$ is a real number
$>$ Including a domain is crucial; much easier to understand.
$>$ If you think you can skip a domain, you're likely incorrect by 90%.
$>$ Writing a domain only requires a bit more space. No side effects.
$>$ An exceptional case is when you hide a domain intentionally. \checkmark Avoid unnecessarily complex descriptions. (I'll explain later) \checkmark e.g., a feature volume for time series $\boldsymbol{V} \in \mathbb{R}^{H \times W \times T}$. T depends on V.

First things first: real numbers, natural numbers, etc

> Blackboard bold is used for special symbols such as real numbers.
\checkmark TeX: ¥mathbb
\checkmark Powerpoint: egg., ¥doubleR
> Examples:
$\checkmark \mathbb{R}$: Real numbers
$\checkmark \mathbb{N}$: Natural numbers
$\checkmark \mathbb{Z}$: Integers

https://en.wikipedia.org/wiki/Blackboard_bold
> Blackboard bold is typically used only in traditional contexts.
\checkmark ix Don't recommend using it for a vector: $\mathbb{x} \in \mathbb{R}^{3}$ (although we do so when writing a vector by hand)

$$
y=A x+1 b
$$

Summary

Type	How to write	Example of domain	Example of values
Scalar	Lowercase or uppercase	$a \in \mathbb{R} . b \in \mathbb{N} . K \in\{10,20,30\}$.	$a=3.2 . b=13 . K=20$.
Vector	Lowercase and bold > TeX: ¥mathbf or $¥ b m$ > Powerpoint: bold	$\boldsymbol{x} \in \mathbb{R}^{3} . \boldsymbol{b} \in\{0,1\}^{B}$.	$\boldsymbol{x}=[0.1,0.2,0.3]^{\top} . \boldsymbol{b}=[0,1,1,0]^{\top}$.
Matrix and Tensor	Uppercase and bold > TeX: ¥mathbf or $¥ b m$ > Powerpoint: bold	$\boldsymbol{A} \in \mathbb{R}^{2 \times 3} . \boldsymbol{I} \in[0,1]^{H \times W \times 3}$.	$\boldsymbol{A}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 4 & 5 & 4 \end{array}\right]$
Set	Calligraphy font in uppercase > TeX: ¥mathcal $>$ Powerpoint: e.g., $¥$ scriptS	$\mathcal{S} \subset \mathbb{N}$.	$\mathcal{S}=\{2,4,8,16\}$.

Scalar

$>$ Recommend: Lowercase or uppercase (e.g., $a \in \mathbb{R}, K \in \mathbb{N}, \mu \in \mathbb{C}$) $>$ If you can specify the range tightly, it's more informative.

Example	Meaning
$a \in[2,7]$	$2 \leq a \leq 7 \quad$ More informative than $a \in \mathbb{R}$
$a \in(2,7)$	$2<a<7$
$a \in[2,7)$	$2 \leq a<7$
$a \in\{2,7\}$	$a=2$ or $a=7$
$a \in\{2, \ldots, 7\}$	If naturally interpreted, $a=2$ or $a=3$ or \ldots or $a=7$.

$$
[2,7)
$$

All brackets are different and have various meanings
(): Parentheses
[] : Square brackets
\{\} : Curly brackets

Vector

$>$ Recommend: Lowercase and bold, e.g.,
$\checkmark x \in \mathbb{R}^{3}$ 3-dimensional real-valued vector
$\checkmark \boldsymbol{b} \in\{0,1\}^{B} B$-dimensional binary vector
> How to write
\checkmark TeX: ¥mathbf or $¥ b m$
\checkmark Powerpoint: set bold
$>¥ m a t h b f$ or $¥ b m$?
\checkmark Depends on the TeX style.
\checkmark Render both, compare them, and select the best one.

Vector

$>$ Recommend: Lowercase and bold, e.g.,
$\checkmark x \in \mathbb{R}^{3}$ 3-dimensional real-valued vector
$\checkmark \boldsymbol{b} \in\{0,1\}^{B} B$-dimensional binary vector
> How to write
\checkmark TeX: ¥mathbf or ¥bm
\checkmark Powerpoint: set bold
$>¥ m a t h b f$ or $¥ b m$?
\checkmark Depends on the TeX style.
\checkmark Render both, compare them, and select the best one.

Vector

$>$ Row-vector or column-vector?
\checkmark Recommend: If you write a vector (e.g., $\boldsymbol{x} \in \mathbb{R}^{3}$), assume that all vectors are column-vectors.

$$
\boldsymbol{x}=[1,2,3]^{\top}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { Column-vector. OK. }
$$

$$
\boldsymbol{y}=[1,2,3] \quad \text { Row-vector. Only write this if you explicitly need it. }
$$

$>$ Why should we be careful?
\checkmark Need to be careful when performing matrix operations:
Given $\boldsymbol{A} \in \mathbb{R}^{3 \times 3},\left\{\begin{array}{l}\boldsymbol{A} \boldsymbol{x} \text { can be computed } \\ \left.\boldsymbol{A} \boldsymbol{y} \text { cannot be computed (} \boldsymbol{A} \boldsymbol{y}^{\top} \text { can be computed }\right)\end{array}\right.$

Vector

> More strictly, just writing " $\mathbb{R}^{D "}$ cannot decide it's colum or row.
\checkmark Explicitly saying D-dim column-vectors: $\boldsymbol{a} \in \mathbb{R}^{D \times 1}$
\checkmark Explicitly saying D-dim row-vectors: $\boldsymbol{b} \in \mathbb{R}^{1 \times D}$
$>$ Recommend: Decide in your mind that $\boldsymbol{c} \in \mathbb{R}^{D}$ is an abbreviated notation of $\boldsymbol{c} \in \mathbb{R}^{D \times 1}$
$>$ Important rule: Again, make it to be consistent throughout the paper. \checkmark Recommend: "column-vector $\boldsymbol{x} \in \mathbb{R}^{3}$ and column-vector $\boldsymbol{y} \in \mathbb{R}^{3 "}$ \checkmark Not recommend but OK: "row-vector $\boldsymbol{x} \in \mathbb{R}^{3}$ and row-vector $\boldsymbol{y} \in \mathbb{R}^{3 "}$ ×x NO!!!: "column-vector $\boldsymbol{x} \in \mathbb{R}^{3}$ and row-vector $\boldsymbol{y} \in \mathbb{R}^{3}$

Matrix and tensor

> Recommend: Uppercase and bold, e.g.,
$\checkmark \boldsymbol{A} \in \mathbb{R}^{2 \times 3} 2 \times 3$ real-valued matrix
$\checkmark I \in[0,1]^{H \times W \times 3} \mathrm{HxWx3} 33^{\text {rd }}$-order tensor. Each element is in $[0,1]$
$>$ Bold or not?
\checkmark Non-bold may be more usual.
\checkmark But a non-bold uppercase alphabet can be misinterpreted as a scalar (e.g., K is a matrix? Scalar?). Thus, I prefer bold for a matrix.
> Higher-order tensor is often used in CV as an image is $3^{\text {rd }}$-order tensor. \checkmark For higher-order tensors, one may use ¥mathsf or bold $¥$ mathcal

$$
\mathrm{A} \in \mathbb{R}^{2 \times 3 \times 4} \quad \mathcal{A} \in \mathbb{R}^{2 \times 3 \times 4}
$$

Matrix and tensor

Example	Meaning
$\boldsymbol{a} \in \mathbb{R}$	Real-valued scalar
$\boldsymbol{a} \in \mathbb{R}^{2}$	Two-dimensional real-valued vector
$\boldsymbol{A} \in \mathbb{R}^{2 \times 3}$	2×3 real-valued matrix
$\boldsymbol{B} \in[0,1]^{2 \times 3}$	2×3 matrix, where each element is in $[0,1]$
$\boldsymbol{C} \in[0,1)^{2 \times 3 \times 4}$	$2 \times 3 \times 4$ tensor, where each element is in $[0,1)$
$\boldsymbol{D} \in\{-1,0,1\}^{2 \times 3}$	2×3 matrix, where each element is either -1 or 0 or 1
$\boldsymbol{E} \in\{0, \ldots, 100\}^{2 \times 3}$	2×3 matrix, where each element is either 0 or \ldots or 100
$\boldsymbol{f} \in \mathbb{N}^{1 \times a b}$	$(a b)$-dimensional row vector of natural numbers
$\boldsymbol{F} \in \mathbb{N}^{a \times b}$	$a \times b$ matrix of natural numbers

Matrix and tensor

$>$ Accessing an element of a vector: Given $\boldsymbol{a} \in \mathbb{R}^{3}$,
$\checkmark i$-th element: $a_{i} \in \mathbb{R}, a[i] \in \mathbb{R}, a(i) \in \mathbb{R} \quad$ Several styles
\checkmark Natural choice: a_{i}
\checkmark Don't write: \boldsymbol{a}_{i} (this implies an i-th vector from $\left\{\boldsymbol{a}_{n}\right\}_{n=1}^{10}$)
$>$ Accessing an element of a matrix: Given $\boldsymbol{A} \in \mathbb{R}^{3 \times 2}$,
$\checkmark(i, j)$-th element: $A_{i j} \in \mathbb{R}, a_{i j} \in \mathbb{R}, A[i, j] \in \mathbb{R}, A(i, j) \in \mathbb{R}$ $\checkmark i$-th row: $\boldsymbol{A}_{i:} \in \mathbb{R}^{1 \times 2}, \boldsymbol{A}[i,:] \in \mathbb{R}^{1 \times 2}, \boldsymbol{A}(i,:) \in \mathbb{R}^{1 \times 2}$ $\checkmark j$-th column: $\boldsymbol{A}_{: j} \in \mathbb{R}^{3}, \boldsymbol{A}[:, j] \in \mathbb{R}^{3}, \boldsymbol{A}(:, j) \in \mathbb{R}^{3}$

Matrix and tensor

> Parenthesis or square brackets?
\checkmark Both are fine.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

$>$ Personally, I prefer square brackets as parenthesis have more meanings.
$>$ i.e., parenthesis for vector/matrix may conflict with other usages, e.g.,
\checkmark Usual sentence: "We think XXX (Note that $\boldsymbol{x}=(1,2)$)"
\checkmark Binomial coefficient: $\binom{2}{3} \quad$ Cannot distinguish with $\binom{2}{3} \in \mathbb{R}^{2}$
\checkmark Element-based representation of a matrix: $\boldsymbol{A}=\left(a_{i j}\right)$
\checkmark Function: $f((1,2))$
\checkmark Tuple: $(1,2, \overline{3}) \quad \overline{P a r e n t h e s i s ~ i s ~ u s e d ~ f o r ~ a ~ t u p l e . ~}$
\checkmark etc...

Set

$>$ Recommend: Calligraphy font in uppercase, e.g., $\checkmark \mathcal{S}=\{2,13,5,7\} \subset \mathbb{N}$ A set of natural numbers.
$\checkmark \mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \subset \mathbb{R}^{D}$ A set of $N D$-dimensional vectors.
\square Can be written as $\mathcal{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$. Here, $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$.
> How to write
\checkmark TeX: ¥mathcal
\checkmark Powerpoint: e.g., ¥scriptS
$>$ Cardinality (the number of elements): $|\mathcal{S}|=4$
$>$ A set doesn't contain duplicate elements. \checkmark If does, it's called multi-set (or bag): $\mathcal{A}=\{a, a, b\}$.

Set

$>$ Domain??
$\checkmark \in$ It's a bit tough to show a domain of a set.
Powerset: Given a set \mathcal{A}, a powerset of \mathcal{A} is defined as all subsets of \mathcal{A}. E.g., $>\mathcal{A}=\{1,3,5\}$, then
$>2^{\mathcal{A}}=\{\phi,\{1\},\{3\},\{5\},\{1,3\},\{3,5\},\{5,1\},\{1,3,5\}\}$
\checkmark Consider a set $\mathcal{S}=\{5,3\} \subset \mathcal{A}$, the domain of a set \mathcal{S} is:

- $\mathcal{S} \in 2^{\text {A }}$
\checkmark In the same way, if a set \mathcal{B} is a subset of $\mathcal{X}, \mathcal{B}^{\prime}$ s domain is 2^{X}
$\square \mathcal{B} \subset \mathbb{R}$, then $\mathcal{B} \in 2^{\mathbb{R}}$

```
Usually, "\mathcal{B}\subset\mp@subsup{\mathbb{R}}{}{\prime\prime}\mathrm{ style is easier to read.}
```

$>$ The powerset may helps when defining a function with a set-input $f(\mathcal{B})$: $\checkmark f: 2^{\mathbb{R}} \rightarrow \mathbb{R}$

Summary (again)

Type	How to write	Example of domain	Example of values
Scalar	Lowercase or uppercase	$a \in \mathbb{R} . b \in \mathbb{N} . K \in\{10,20,30\}$.	$a=3.2 . b=13 . K=20$.
Vector	Lowercase and bold > TeX: ¥mathbf or ¥bm > Powerpoint: bold	$\boldsymbol{x} \in \mathbb{R}^{3} . \boldsymbol{b} \in\{0,1\}^{B}$.	$\boldsymbol{x}=[0.1,0.2,0.3]^{\top} . \boldsymbol{b}=[0,1,1,0]^{\top}$.
Matrix and Tensor	Uppercase and bold > TeX: ¥mathbf or $¥ b m$ > Powerpoint: bold	$\boldsymbol{A} \in \mathbb{R}^{2 \times 3} . \boldsymbol{I} \in[0,1]^{H \times W \times 3}$.	$A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 4 & 5 & 4 \end{array}\right]$
Set	Calligraphy font in uppercase > TeX: ¥mathcal > Powerpoint: e.g., ¥scriptS	$\mathcal{S} \subset \mathbb{N}$.	$\mathcal{S}=\{2,4,8,16\}$.

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?
 > Misc

String It's not easy to use strings in equations

> If you use strings for labels, the easiest way is to define them directly.
\checkmark A label set $\mathcal{L}=\{$ "dog", "cat", "horse" $\}$
\checkmark Image classifier $f: \mathbb{R}^{H \times W \times 3} \rightarrow \mathcal{L}$

If you don't run more complex
operations on them, this should suffice.
$>$ Alternatively, you can assign an integer for each label.
\checkmark A label set $\mathcal{L}=\{1, \ldots, N\}$
\checkmark Image classifier $f: \mathbb{R}^{H \times W \times 3} \rightarrow \mathcal{L}$

Label	ID	One-hot
"dog"	1	$[1,0,0]^{\top}$
"cat"	2	$[0,1,0]^{\top}$
"horse"	3	$[0,0,1]^{\top}$

\checkmark A label set $\mathcal{L}=\left\{\boldsymbol{b}_{n}\right\}_{n=1}^{N}, \boldsymbol{b}_{n} \in\{0,1\}^{N}$
\checkmark Image classifier $f: \mathbb{R}^{H \times W \times 3} \rightarrow \mathcal{L}$
\checkmark Easy to integrate in other equations, e.g., $\|f(\boldsymbol{X})-\boldsymbol{y}\|_{2}^{2}$ for some \boldsymbol{y}

The description $\boldsymbol{b}_{n} \in\{0,1\}^{N}$ is not tight; could be any N-dim binary vectors.
> If you want to emphasize \boldsymbol{b}_{n} is one-hot, you can write:
$\checkmark \boldsymbol{b}_{n} \in \mathcal{H}_{1 / N}$
$\checkmark \mathcal{H}_{1 / N}=\left\{b \in\{0,1\}^{N} \mid\|b\|=1\right\}$
\checkmark Here, $\mathcal{H}_{1 / N}$ is a set of all 1 -of-N binary encoding vectors [1]
[1] M. Norouzi and D. J. Fleet, "Cartesian k-means", CVPR 2013
> Alternatively, you can use one-hot vectors
\checkmark A label set $\mathcal{L}=\left\{\boldsymbol{b}_{n}\right\}_{n=1}^{N}, \boldsymbol{b}_{n} \in\{0,1\}^{N}$
\checkmark Image classifier $f: \mathbb{R}^{H \times W \times 3} \rightarrow \mathcal{L}$
\checkmark Easy to integrate in other equations, e.g., $\|f(\boldsymbol{X})-\boldsymbol{y}\|_{2}^{2}$ for some \boldsymbol{y}

String 制A set of character sequences \mathcal{V}^{*}

> If you need more detailed definition: Kleene closure for characters.
\checkmark Define a vocabulary $\mathcal{V}=\{$ "a", "b", ..., "z’" $\}$.
\checkmark Here, $\mathcal{V}^{2}=\mathcal{V} \times \mathcal{V}, \mathcal{V}^{3}=\mathcal{V} \times \mathcal{V} \times \mathcal{V}, \ldots$ i.e., "a" $\in \mathcal{V}$ and "dog" $\in \mathcal{V}^{3}$
\checkmark Define a set of character sequences $\mathcal{V}^{*}=\{\varnothing\} \cup \mathcal{V} \cup \mathcal{V}^{2} \cup \cdots$
\checkmark Any string (character sequence) is in \mathcal{V}^{*} : "a", "dog", "hoge" $\in \mathcal{V}^{*}$
$>$ A label set $\mathcal{L}=\{$ "dog", "cat", "horse" $\} \subset \mathcal{V}^{*}$
$>$ Straightforward. But not easy to connect with other equations.

String 囲A set of token sequences \mathcal{V}^{*}

char	token
"a"	1
"b"	2

> If you need more math-friendly representations: Kleene closure for tokens.
...
\checkmark Define a vocabulary $\mathcal{V}=\{1, \ldots, N\}$.
\checkmark Here, $\mathcal{V}^{2}=\mathcal{v} \times \mathcal{V}, \mathcal{V}^{3}=\mathcal{v} \times \mathcal{V} \times \mathcal{V}, \ldots>$ Now it's just a vector.
\checkmark i.e., $3 \in \mathcal{V}$ and $[13,6,20] \in \mathcal{V}^{3} \longrightarrow$ Intentionally use "row-vector" style
\checkmark Define a set of token sequences $\mathcal{V}^{*}=\{\varnothing\} \cup \mathcal{V} \cup \mathcal{V}^{2} \cup \cdots$
\checkmark Any token sequence (variable length integer-vectors) is in \mathcal{V}^{*}
\checkmark 3, $[13,6,20],[6,18,16,7] \in \mathcal{V}^{*}$
$>$ This is an ASCII representation for the c-language.
$>$ [2] uses this notation.
[2] M. Phuong and M. Hutter, "Formal Algorithms for Transformers", arXiv 2022. https://arxiv.org/abs/2207.09238 32

String 欭A set of token sequences
\checkmark Given $v \in \mathcal{V}$, decoder $D(v)$ returns the original character.
$>$ Decoder
\checkmark e.g., $D(7)=$ "g".
\checkmark Extends this to $\boldsymbol{w} \in \mathcal{V}^{*}$. e.g., $D([4,15,7])=$ "dog".
$>$ Vector-style operations
\checkmark e.g., $\boldsymbol{w}=[6,18,16,7] \in \mathcal{V}^{*}$, then $D(\boldsymbol{w})=$ "frog"
\checkmark Specify a character: $w_{2}=18$, and $D\left(w_{2}\right)=$ " r "
\checkmark Slicing: $\boldsymbol{w}_{2: 4}=[18,16,7]$, and $D\left(\boldsymbol{w}_{2: 4}\right)=" r o g "$
$>$ Difference to a superset? $2^{\mathcal{V}}$ vs \mathcal{V}^{*}
\checkmark An element of a super set is a set (not a vector). No duplicate.
$\checkmark\{3,4\} \in 2^{\mathcal{V}}$ Cannot have duplicates $\quad[3,4,4] \in \mathcal{V}^{*}-$ Can have duplicates

String A set of token sequences

$v \quad D(v)$

> Token embedding D: dim of embedding
\checkmark Embedding matrix $\boldsymbol{W} \in \mathbb{R}^{D \times N}$
\checkmark The vector representation (embedding) of $v \in \mathcal{V}$ is $\boldsymbol{W}[:, v] \in \mathbb{R}^{D}$

> Can be a tuple?
\checkmark Yes. You can define so (I'll discuss later)
$\checkmark(1,3,5) \in \mathcal{V}^{*}$

Equations

> Basic notation for variables
$>$ String
> Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?
 > Misc

Tips for sets

$>$ How to describe $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ in short?
$\checkmark \because$ OK, but a bit long? $\left\{\boldsymbol{x}_{i} \mid i=1,2, \ldots, N\right\}$
(O) OK, but a bit long? $\left\{x_{i} \mid 1 \leq i \leq N\right\}$
(-) OK, but a bit long? $\left\{\boldsymbol{x}_{i} \mid i \in\{1,2, \ldots, N\}\right\}$
(-) Good! Short! $\left\{x_{i}\right\}_{i=1}^{N}$

This may seem obvious? But many junior students struggle with this.
$>$ How to do when I don't want to use an alphabet for \#set? $\checkmark \mathcal{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots\right\}$ Tips to hide the number of elements
\checkmark If you need the number of X, use $|X|$
You don't consume any additional alphabets
\checkmark Double brackets to enumerate natural numbers $\checkmark \llbracket N \rrbracket=\{1,2, \ldots, N\}$

This form is simple, but not so much intuitive. Be careful.

Set-builder notation

> A way to create a set. e.g.,

$>$ The domain can be written on the right:

$$
\checkmark\{x \in \mathbb{R} \mid x>0\}=\{x \mid \underline{x \in \mathbb{R}}, x>0\}
$$

> Any function can be applied to the target variable:
$\checkmark\left\{3 x+5 \mid x \in \mathbb{R}^{4},\|x\|_{2}=1\right\}$
For all points in the 4-dimensional unit sphere, affine-transform them by scaling 3 and shift 5

Set-builder notation

> Multiple predicates
$\checkmark\left\{x \in \mathbb{R}^{3} \mid x^{\top} y_{1}=0, x^{\top} y_{2}=0\right\} \quad \begin{aligned} & \text { All } 3 \text {-dim vectors that are orthogonal to } \\ & \text { both } y_{1} \text { and } y_{2}\end{aligned}$
> Multiple variables can be used at the same time (multiple for-loop) $\checkmark\{5 i j \mid i, j \in\{1,2,3\}, i \neq j\}$
$>$ Set-builder notation is equivalent to a list comprehension in Python $\checkmark \mathcal{A}=\{1,2,3,4,5\}$, and $\left\{a^{2} \mid a \in \mathcal{A}, a>3\right\}$ $\checkmark A=[1,2,3,4,5]$ and $\{a * a$ for a in A if $a>3\}$

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
> Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?
 > Misc

Inputs/outputs of functions

$>$ There are two ways to describe the inputs/outputs of a function \checkmark e.g., considering $f(x)=x^{2}$ for $x \in \mathbb{R}$
$f: \mathbb{R} \rightarrow \mathbb{R} \quad$ Set-based description. Use $¥$ to (\rightarrow) $f: x \mapsto x^{2} \quad$ Element-based description. Use $¥ m$ mapsto (\mapsto)
$>$ Describing the inputs/outputs makes functions easier to read.
> It's ok to directly write the description in a sentence. No side effects.
\checkmark O "Let us define a function f as follows ..."
\checkmark © "Let us define a function $f: \mathbb{N} \rightarrow\{1, \ldots, 10\}$ as follows ..."

Inputs/outputs of functions

Domain re two was Codomain e the inputs/outputs of a function \checkmark e., considering $f(x)=x^{2}$ for $x \in \mathbb{R}$

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R} & \text { Set-based description. Use } ¥ \text { to }(\rightarrow) \\
f: \mathcal{X} \mapsto \Psi^{2} & \text { Element-based description. Use } ¥ \text { mapsto }(\mapsto)
\end{array}
$$

$>$ Describing the inputs/outputs makes functions easier to read.
> It's ok to directly write the description in a sentence. No side effects.
\checkmark O "Let us define a function f as follows ..."
\checkmark © "Let us define a function $f: \mathbb{N} \rightarrow\{1, \ldots, 10\}$ as follows ..."

Inputs/outputs of functions

> Multiple inputs: $z=f(x, y)=x^{2}+y+1$
$\checkmark f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
$\checkmark f:(x, y) \mapsto z$ or $f:(x, y) \mapsto x^{2}+y+1$
$>$ Vector input: $f(\boldsymbol{x})=\boldsymbol{a}^{\top} \boldsymbol{x}+b$, where $\boldsymbol{a}, \boldsymbol{x} \in \mathbb{R}^{D}$ and $b \in \mathbb{R}$

$$
\begin{aligned}
& \checkmark f: \mathbb{R}^{D} \rightarrow \mathbb{R} \\
& \checkmark f: \boldsymbol{x} \mapsto \boldsymbol{a}^{\top} \boldsymbol{x}+b
\end{aligned}
$$

$>$ Vector input and vector output: for $\boldsymbol{x}=\left[x_{1}, x_{2}\right]^{\top} \in \mathbb{R}^{2}, f$ is defined as
$\checkmark f: x \mapsto\left[\begin{array}{c}x_{1}+x_{2} \\ 3 x_{1}+\log x_{2} \\ x_{2}^{3}\end{array}\right]$ by the element-based description.
\checkmark Then, the set-based description is $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

Inputs/outputs of functions

$>$ When the output is a vector, should the function itself be bold? \checkmark Depends.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

$>$ With this, the equation may be beautiful: $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{a}$
$>\dot{\beta}$ In modern CV, all functions may have a vector-output, thus all functions may be bold. It may seem "heavy"?
$>$ In this document, I use non-bold for vector-functions.

Set-based? Element-based?

> Usually, the set-based description is more informative.
$>$ Readers have an interest in what are the possible values of the inputs and outputs.
$>$ e.g., for $f(x)=x^{2}$,

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f: x \mapsto x^{2}
\end{aligned}
$$

© Both an input and an output are real-values.

\because This is just repeating the definition.

> The element-based description is useful if you want to intentionally hide the complex relationships.

Set-based? Element-based?

$>$ Consider an object detector f, which inputs $H \times W \times 3$ 8-bit image (each pixels is in $\{0, \ldots, 255\}$) and returns the followings.
Label $l \in\{1, \ldots, K\}$
Bounding box $\boldsymbol{b}=[y, x, h, w]^{\top} \in \mathbb{N}^{4}$
Confidence score $\alpha \in \mathbb{R}$

$>$ Set-based precise description is complex:

$$
\checkmark f:\{0, \ldots, 255\}^{H \times W \times 3} \rightarrow\{1, \ldots, K\} \times \mathbb{N}^{4} \times \mathbb{R}
$$

₹ The pixel value range is not important.
Don't want to use alphabets H and W here.

2 Not so much clear about the right side. What is each variable?
> May be better to moderately hide the detail:
"We consider a K-class object detector $f: I \mapsto(l, \boldsymbol{b}, \alpha)$. This function inputs an image \boldsymbol{I}, and returns a label $l \in\{1, \ldots, K\}$, a bbox $b=[y, x, h, w]^{\top} \in \mathbb{N}^{4}$, and a confidence $\alpha \in \mathbb{R}^{\prime \prime}$

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
$>$ Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?
 > Misc

Subscript/superscript

> Superscripts and subscripts are used to provide additional information to a variable.

> Principal: As little use as possible!
$>x_{i, j}^{k}$ Three variables: ${ }^{\times_{0}^{x}}$ No! Hard to follow...
$>x_{a_{i}}$ Subscript of subscript: ${ }^{\star \times}$ No! Hard to follow...
$>$ Alternatives for subscript/superscript: decorations
$>$ e.g., \hat{x}, \bar{x}
$>$ No: $x_{\text {mean }}=\frac{1}{N} \sum x_{n}$ Recommend: $\bar{x}=\frac{1}{N} \sum x_{n}$

Subscript/superscript

> Tips: a loop index can be removed by re-define a variable.
$>$ Consider $\mathcal{V}=\left\{v_{n}\right\}_{n=1}^{N}$
$>$ © "Here, $f\left(v_{n}\right)$ is ..."

$>$ (c) "Let us consider $v \in \mathcal{V}$. Here, $f(v)$ is ..."

Subscript/superscript

> Don't make the subscript bold (very typical mistake)
\checkmark.xx $¥ m a t h b f\left\{x _i\right\}: \boldsymbol{x}_{\boldsymbol{i}}$ $>$ Natural interpretation is that i is a vector to $¥ m a t h b f\{x\} _i: \boldsymbol{x}_{i}$ indicate identifiers, e.g., $\boldsymbol{i}=[1,2]$, results in $x_{1,2}$ $>$ Moreover, this mistake smells amateurish.
$>$ If two+ letters are used in the meaning of a label, make it Roman. $\checkmark \nexists m a t h b f\{x\} _\neq m a t h r m\{i n\}: x_{i n}$ OK $\checkmark \nexists m a t h b f\{x\} _\{i n\}: x_{i n}$ Not recommend
$>$ This can be interpreted as

$$
j=i * n
$$

$\checkmark x_{j}$

Subscript/superscript

> Don't put variables with different meanings in sub/superscript.
$>$ Consider $\mathcal{V}=\left\{\boldsymbol{v}_{n}\right\}_{n=1}^{N}$, where $\boldsymbol{v}_{n} \in \mathbb{R}^{D}$
$>$ How to denote d-th element of n-th vector?
$\checkmark x_{0}^{x} v_{n, d} \in \mathbb{R}$ Not recommend! n and d have different meanings!
$v_{n}[d] \in \mathbb{R}:$ OK. Combining square brackets.
(1) $v_{d} \in \mathbb{R}$ or $v[d] \in \mathbb{R}$ for $v \in \mathcal{V}$: Clear.
$>$ Tips: You can stack \mathcal{V} to form a matrix $\boldsymbol{V} \in \mathbb{R}^{D \times N}$ $\stackrel{\mathcal{V}}{\{\|\|\|\|\|\|} \Rightarrow$ \checkmark Then, $v_{d, n} \in \mathbb{R}$ or $v[d, n] \in \mathbb{R}$ is OK (usual matrix element access)

```
( }n,d\mathrm{ ) is now ( }d,n)\mathrm{ . Be careful!
```

$>$ Vector-set (\mathcal{V}) to matrix (\boldsymbol{V}) doesn't consume an alphabet.

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes

> Basic
$>$ What do you want to express?
> Misc

Don't write numpy

$>$ Many people write numpy descriptions directly in equations. It's wrong.

$>$ Recommend:
$>\boldsymbol{a}=[5,4,3]^{\top} . \boldsymbol{b}=\boldsymbol{a}-31$
$>$ Use bold
$>$ Column-vectors
$>$ Use all-one vector $1=[1,1, \ldots]^{\top}$

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=B X+(1-B) Y
$$

B

X

$1-B$

Y

There are three big mistakes... Can you guess?

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
\boldsymbol{Z}=\boldsymbol{B} \boldsymbol{X}+(1-\boldsymbol{B}) \boldsymbol{Y}
$$

First, make the variables
bold, and write domains

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=\boldsymbol{B} \boldsymbol{X}+(1-\boldsymbol{B}) \boldsymbol{Y}
$$

First, make the variables bold, and write domains

Mistake1: Broadcast happens here!
We need to use an all-one matrix.

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=B X+(1-B) Y
$$

$\boldsymbol{Z} \in \mathbb{R}^{H \times W \times 3}$

$\boldsymbol{B} \in\{0,1\}^{H \times W}$

$\boldsymbol{X} \in \mathbb{R}^{H \times W \times 3}$

$1-B$

$\boldsymbol{Y} \in \mathbb{R}^{H \times W \times 3}$

Specific examples of failures

$>$ Let X and Y be 3-channel imaces
$>$ C Mistake2: $\boldsymbol{B X}$ is matrix-multiplication! We need per-
$>$ W element multiplication (Hadamard product) \odot
ien the value of the mask IS zero.
$>Z$, the resulting image combining...and Y, is computed as follows.

$$
Z=B X+(1-B) Y
$$

$\mathbf{Z} \in \mathbb{R}^{H \times W \times 3}$

$\boldsymbol{B} \in\{0,1\}^{H \times W}$

$\boldsymbol{X} \in \mathbb{R}^{H \times W \times 3}$

$1-B$

$\boldsymbol{Y} \in \mathbb{R}^{H \times W \times 3}$

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=\boldsymbol{B} \odot X+(1-\boldsymbol{B}) \odot Y
$$

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=\boldsymbol{B} \odot X+(\mathbf{1}-\boldsymbol{B}) \odot \boldsymbol{Y}
$$

$\boldsymbol{Z} \in \mathbb{R}^{H \times W \times 3}$

$\boldsymbol{B} \in\{0,1\}^{H \times W}$

$\boldsymbol{X} \in \mathbb{R}^{H \times W \times 3}$

Mistake3: $\boldsymbol{B} \odot \boldsymbol{X}$ still doesn't work because the tensor shape is different! $H \times W$ vs $H \times W \times 3$

$\boldsymbol{Y} \in \mathbb{R}^{H \times W \times 3}$
(0) 80% computer vision papers ignore this issue....

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=B \odot X+(1-B) \odot Y
$$

Solution 1: Define \boldsymbol{B} as a stack of the original \boldsymbol{B}, making the shape same.

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=\boldsymbol{B} \odot X+(\mathbf{1}-\boldsymbol{B}) \odot \boldsymbol{Y}
$$

Solution 2: Descript everything per channel, then combine the results.

Specific examples of failures

$>$ Let X and Y be 3-channel images.
$>$ Consider a mask matrix B whose elements are 0 or 1.
$>$ We adopt X when the value of the mask is one and Y when the value of the mask is zero.
$>Z$, the resulting image combining X and Y, is computed as follows.

$$
Z=B \odot X+(1-B) \odot Y
$$

Solution 3: Define \odot loosely, e.g.,

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?
 > Misc

Misc

$>$ Don't write English words in equations

```
\(>{ }^{\times x} y=\operatorname{score}(x)+10\)
\(>\) © \(y=s(x)+10\)
```

> If you're not 100% confident, don't use quantifiers (\forall, \exists).
$>$ If you use variables, please always define and explain them. E.g., if you write $y=a x+b$, then explain y, a, x, b.
$>$ If it is too difficult to describe what you are trying to explain in mathematical equations, please explain them in writing and figures. \checkmark ※x Writing half-wrong equations are terrible.

Tuple

$>$ (something like) an ordered-set: e.g., $a=(10,20,30)$
$>$ Similar to a set:
\checkmark Can contain any elements: e.g., $b=\left([1,2,3]^{\top}, " \mathrm{a}\right.$ ", 25) \checkmark Remember: $f: I \mapsto(l, \boldsymbol{b}, \alpha)$
$>$ But the order is decided:

This was a tuple

- Can contain duplicates: $a=(1,1,3)$
$>$ Similar to a vector:

$$
\checkmark \boldsymbol{c}=[1,2,3]^{\top} \text { vs } d=(1,2,3)
$$

> But (usually) no mathematical structures:
\checkmark E.g., the addition is not defined: $(1,2,3)+(4,5,6)$ No!

Cheat-sheet

Not-recommend	OK	Reason
Write a vector as x	Write a vector as \boldsymbol{x}	Use a bold font for a vector.
$\boldsymbol{x}=[1,2,3]$	$\boldsymbol{x}=[1,2,3]^{\top}$	Use column-vectors.
Consider D-dim vector \boldsymbol{x}	Consider D-dim vector $\boldsymbol{x} \in \mathbb{R}^{D}$	Show the domain.
$x_{i, j}^{k}$ Many sub-/superscripts	Don't use so much.	Hard to understand.
$x_{a_{i}}$ subscript of subscript	Avoid.	Hard to understand.
$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	Don't make an index bold.
$\boldsymbol{x}_{\text {in }}$	$x_{\text {in }}$	Labels should be roman.
score $(x)+10$	$s(x)+10$	Don't use English words.
$a \in \mathbb{R}^{3}, b \in \mathbb{R}$, then $a+b$	$\boldsymbol{a}+b \mathbf{1}$	Don't broadcast.
For element-wise product, $\boldsymbol{A B}$	$\boldsymbol{A} \odot \boldsymbol{B}$	Element-wise product is Hadamard product.
Using \forall, \exists but not 100% confident	Don't use	You are wrong.

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes

> Basic
$>$ What do you want to express?
$>$ Misc

Pseudo-code: Basic

> What is pseudo-code?

\checkmark Describe an algorithm
\checkmark OK to use mathematical equations
\checkmark OK to use data structures
\checkmark Highlight the key idea \checkmark Many ways to explain the idea

```
procedure CP-ALS(X,R)
    initialize }\mp@subsup{\mathbf{A}}{}{(n)}\in\mp@subsup{\mathbb{R}}{}{\mp@subsup{I}{n}{}\timesR}\mathrm{ for }n=1,\ldots,
    repeat
        for }n=1,\ldots,N\mathrm{ do
            V}\leftarrow\mp@subsup{\mathbf{A}}{}{(1)\top}\mp@subsup{\mathbf{A}}{}{(1)}*\cdots*\mp@subsup{\mathbf{A}}{}{(n-1)\top}\mp@subsup{\mathbf{A}}{}{(n-1)}*\mp@subsup{\mathbf{A}}{}{(n+1)\top}\mp@subsup{\mathbf{A}}{}{(n+1)}*\cdots*\mp@subsup{\mathbf{A}}{}{(N)\top}\mp@subsup{\mathbf{A}}{}{(N)
            \mp@subsup{\mathbf{A}}{}{(n)}\leftarrow\mp@subsup{\mathbf{X}}{}{(n)}(\mp@subsup{\mathbf{A}}{}{(N)}\odot\cdots\odot\mp@subsup{\mathbf{A}}{}{(n+1)}\odot\mp@subsup{\mathbf{A}}{}{(n-1)}\odot\cdots\odot\mp@subsup{\mathbf{A}}{}{(1)})\mp@subsup{\mathbf{V}}{}{\dagger}
            normalize columns of A}\mp@subsup{\mathbf{A}}{}{(n)}\mathrm{ (storing norms as }\boldsymbol{\lambda}\mathrm{ )
        end for
    until fit ceases to improve or maximum iterations exhausted
    return }\boldsymbol{\lambda},\mp@subsup{\mathbf{A}}{}{(1)},\mp@subsup{\mathbf{A}}{}{(2)},\ldots,\mp@subsup{\mathbf{A}}{}{(N
end procedure
```

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an N th-order tensor X of size $I_{1} \times I_{2} \times \cdots \times I_{N}$.

Kolda and Bader, "Tensor Decompositions and Applications", SIAM Review, 2009.

```
Algorithm 3 SVD1: QB-backed low-rank SVD (see [HMT11] and [RST10])
    1: function SVD1(A, },\mp@code{\epsilon},s
        Inputs:
        A is an }m\timesn\mathrm{ matrix. The returned approximation will have rank at
        most k. The approximation produced by the randomized phase of the
        algorithm will attempt to A to within \epsilon error, but will not produce
        an approximation of rank greater than }k+s\mathrm{ .
    Output:
        The compact SVD of a low-rank approximation of A.
        Abstract subroutines:
        QBDecomposer generates a QB decomposition of a given matrix; it
        tries to reach a prescribed error tolerance but may stop early if it
        reaches a prescribed rank limit
2: }\quad\mathbf{Q},\mathbf{B}=\mathbf{QBDecomposer}(\mathbf{A},k+s,\epsilon)#\mathbf{QB}\approx\mathbf{A
        r=min{k, number of columns in \mathbf{Q }}
        U, \Sigma, \mp@subsup{\mathbf{V}}{}{*}=\operatorname{svd}(\mathbf{B})
        U = U[:,: r]
        V=\V[:,:r]
        \Sigma}=\boldsymbol{\Sigma}[:r,:r
        U=QU
        return U, \Sigma, V*
```

Murray+, "Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software", arXiv 2023

Pseudo-code: Basic

> What is pseudo-code?

\checkmark Describe an algorithm

Inputs / outputs description

\checkmark OK to use mathematical equations
\checkmark OK to use data structures
\checkmark Highlight the key idea
\checkmark Many ways to explain tne idea
procedure $\operatorname{CP}-\operatorname{ALS}(X, R)$
initialize $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times \pi}$ for $n=1, \ldots, N$
repeat
repeat
for $n=1, \ldots, N$ do
$\mathbf{V} \leftarrow \mathbf{A}^{(1) \top} \mathbf{A}^{(1)} * \cdots * \mathbf{A}^{(n-1) \top} \mathbf{A}^{(n-1)} * \mathbf{A}^{(n+1) \top} \mathbf{A}^{(n+1)} * \cdots * \mathbf{A}^{(N) \boldsymbol{\top}} \mathbf{A}^{(N)}$
$\mathbf{A}^{(n)} \leftarrow \mathbf{X}^{(n)}\left(\mathbf{A}^{(N)} \odot \cdots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \cdots \odot \mathbf{A}^{(1)}\right) \mathbf{V}^{\dagger}$
normalize columns of $\mathbf{A}^{(n)}$ (storing norms as $\boldsymbol{\lambda}$) end for
until fit ceases to improve or maximum iterations exhausted
return $\boldsymbol{\lambda}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(N)}$
end procedure

nthm 3

> -backed low-rank SVD (see [HMT11] and [RST10])

function S

uts.
A is an $m \times n$ matrix. The returned approximation will have rank at most k. The approximation produced by the randomized phase of the algorithm will attempt to \mathbf{A} to within ϵ error, but will not produce an approximation of rank greater than $k+s$.
Output
The compact SVD of a low-rank approximation of \mathbf{A}.
Abstract subroutines: tries to reach a prescribed error tolerance but may stop early if it reaches a prescribed rank limit

```
2: }\quad\mathbf{Q},\mathbf{B}=\mathbf{QBDecomposer}(\mathbf{A},k+s,\epsilon)#\mathbf{QB}\approx\mathbf{A
3: r=min{k, number of columns in Q }
4: }\mathbf{U},\boldsymbol{\Sigma},\mp@subsup{\mathbf{V}}{}{*}=\operatorname{svd}(\mathbf{B}
U = U [:, :r]
V = V [:,::r]
\Sigma}=\boldsymbol{\Sigma}[:r,:r
U=QU
return U, \Sigma, V*
```

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an N th-order tensor X of size $I_{1} \times I_{2} \times \cdots \times I_{N}$.

Murray+, "Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software", arXiv 2023

Pseudo-code: Basic

> What is pseudo-code?

\checkmark Describe an algorithm
\checkmark OK to use mathematical equations
\checkmark OK to use data structures
\checkmark Highlight the key idea \checkmark Many ways to explain the idea

Algorithm 3 SVD1: QB-backed low-rank SVD (see [HMT11] and [RST10])
1: function $\operatorname{SVD} 1(\mathbf{A}, k, \epsilon, s)$ Inputs:

A is an $m \times n$ matrix. The returned approximation will have rank at most k. The approximation produced by the randomized phase of the algorithm will attempt to \mathbf{A} to within ϵ error, but will not produce an approximation of rank greater than $k+s$.
Output:
The compact SVD of a low-rank approximation of \mathbf{A}.
Abstract subroutines:
QBDecomposer generates a QB decomposition of a given matrix; it tries to reach a prescribed error tolerance but may stop early if it reaches a prescribed rank limit.

```
Q},\mathbf{B}=\mathbf{QBDecomposer}(\mathbf{A},k+s,\epsilon)#\mathbf{QB}\approx\mathbf{A
```

$r=\min \{k$, number of columns in $\mathbf{Q}\}$
$\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}^{*}=\operatorname{svd}(\mathbf{B})$
$\mathbf{U}=\mathbf{U}[:,: r]$
$\mathbf{V}=\mathbf{V}[:,: r]$
$\boldsymbol{\Sigma}=\boldsymbol{\Sigma}[: r,: r]$
$\mathbf{U}=\mathbf{Q} \mathbf{U}$
return $\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}^{*}$

Murray+, "Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software", arXiv 2023

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an N th-order tensor X of size $I_{1} \times I_{2} \times \cdots \times I_{N}$.

Pseudo-code: Basic

> What is pseudo-code?

\checkmark Describe an algorithm
\checkmark OK to use mathematical equations
\checkmark OK to use data structures
\checkmark Highlight the key idea
\checkmark Many ways to explain the idea

```
procedure CP-ALS(X,R)
    initialize }\mp@subsup{\mathbf{A}}{}{(n)}\in\mp@subsup{\mathbb{R}}{}{\mp@subsup{I}{n}{}\timesR}\mathrm{ for }n=1,\ldots,
    repeat
        for }n=1,\ldots,N\mathrm{ do
            V}\leftarrow\mp@subsup{\mathbf{A}}{}{(1)\top}\mp@subsup{\mathbf{A}}{}{(1)}*\cdots*\mp@subsup{\mathbf{A}}{}{(n-1)\top}\mp@subsup{\mathbf{A}}{}{(n-1)}*\mp@subsup{\mathbf{A}}{}{(n+1)\top}\mp@subsup{\mathbf{A}}{}{(n+1)}*\cdots*\mp@subsup{\mathbf{A}}{}{(N)\top}\mp@subsup{\mathbf{A}}{}{(N)
            \mp@subsup{\mathbf{A}}{}{(n)}\leftarrow\mp@subsup{\mathbf{X}}{}{(n)}(\mp@subsup{\mathbf{A}}{}{(N)}\odot\cdots\odot\mp@subsup{\mathbf{A}}{}{(n+1)}\odot\mp@subsup{\mathbf{A}}{}{(n-1)}\odot\cdots\odot\mp@subsup{\mathbf{A}}{}{(1)})\mp@subsup{\mathbf{V}}{}{\dagger}
            normalize columns of A}\mp@subsup{\mathbf{A}}{}{(n)}\mathrm{ (storing norms as }\boldsymbol{\lambda}\mathrm{ )
        end for
    until fit ceases to improve or maximum iterations exhausted
    return }\boldsymbol{\lambda},\mp@subsup{\mathbf{A}}{}{(1)},\mp@subsup{\mathbf{A}}{}{(2)},\ldots,\mp@subsup{\mathbf{A}}{}{(N)
end procedure
```

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an N th-order tensor X of size $I_{1} \times I_{2} \times \cdots \times I_{N}$.

Kolda and Bader, "Tensor Decompositions and Applications", SIAM Review, 2009.

```
Algorithm 3 SVD1: QB-backed low-rank SVD (see [HMT11] and [RST10])
    1: function SVD1(A, , , \epsilon,s)
        Inputs:
        A is an }m\timesn\mathrm{ matrix. The returned approximation will have rank at
        most k. The approximation produced by the randomized phase of the
        algorithm will attempt to A to within \epsilon error, but will not produce
        an approximation of rank greater than }k+s\mathrm{ .
    Output:
        The compact SVD of a lov Comments
        Abstract subroutines:
        QBDecomposer generates a QB position of a given matrix; it
        tries to reach a prescribed error , rance but may stop early if it
        reaches a prescribed rank limit.
        #QB\approx
2: }\quad\mathbf{Q},\mathbf{B}=\mathbf{QBDecomposer}(\mathbf{A},k+s,\epsilon)#\textrm{QB}\approx\mathbf{A
3: }\quadr=\operatorname{min}{k,\mathrm{ number of columns in Q }
        U,\boldsymbol{\Sigma},\mp@subsup{\mathbf{V}}{}{*}=\operatorname{svd}(\mathbf{B})
        U = U[:,: r]
        V=\ V [:,:r]
        \Sigma}=\boldsymbol{\Sigma}[:r,:r
        U=QU
        return U, \Sigma, V*
```

Murray+, "Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software", arXiv 2023

Pseudo-code: Basic

> What is pseudo-code?

\checkmark Describe an algorithm \checkmark OK to use mathematical equations \checkmark OK to use data structures

Algorithm 3 SVD1 : QB-backed low-rank SVD (see [HMT11] and [RST10])
1: function $\operatorname{SVD} 1(\mathbf{A}, k, \epsilon, s)$ Inputs:
$>$ Can use usual sentences to represent complex operations.
$>$ If you think it's hard to write your operations by equations, use sentences.
procedure CP-ALS (X, R)
initialize $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R}$ for $n=1$ repeat
for $n=1, \ldots, N$ do
$\left.\underset{\mathbf{V}}{\leftarrow} \mathbf{A}^{(1) \top} \mathbf{A}^{(1)} * \cdots * \mathbf{A}^{(n-1)} \quad 1\right) * \mathbf{A}^{(n+1) \top} \mathbf{A}^{(n+1)} * \cdots * \mathbf{A}^{(N) \top} \mathbf{A}^{(N)}$
$\mathbf{A}^{(n)} \Leftarrow \mathbf{X}^{(n)}\left(\mathbf{A}^{(N)} \odot \ldots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \ldots \odot \mathbf{A}^{(1)}\right) \mathbf{V}^{\dagger}$
normalize columns of $\mathbf{A}^{(n)}$ (storing norms as $\boldsymbol{\lambda}$)
end for
until fit ceases to improve or maximum iterations exhausted return $\boldsymbol{\lambda}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(N)}$
end procedure

The compact SVD of a low-rank approximation of \mathbf{A}.
Abstract subroutines: QBDecomposer generates a QB decomposition of a given matrix; it tries to reach a prescribed error tolerance but may stop early if it reaches a prescribed rank limit.
2: $\quad \mathbf{Q}, \mathbf{B}=\mathbf{Q B D e c o m p o s e r}(\mathbf{A}, k+s, \epsilon) \# \mathbf{Q B} \approx \mathbf{A}$
3: $\quad r=\min \{k$, number of columns in $\mathbf{Q}\}$
4: $\quad \mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}^{*}=\operatorname{svd}(\mathbf{B})$
$\mathbf{U}=\mathbf{U}[:,: r]$
$\mathbf{V}=\mathbf{V}[:,: r]$
$\boldsymbol{\Sigma}=\boldsymbol{\Sigma}[: r,: r]$
$\mathbf{U}=\mathbf{Q} \mathbf{U}$
return $\mathbf{U}, \boldsymbol{\Sigma}, \mathbf{V}^{*}$

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an N th-order tensor X of size $I_{1} \times I_{2} \times \cdots \times I_{N}$.

Murray+, "Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software", arXiv 2023

Pseudo-code: Basic

\gg Look very different
> Left: more pseudo-code-ish
> Right: more like equations (this is actually MATLAB-ish)

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an N th-order tensor X of size $I_{1} \times I_{2} \times \cdots \times I_{N}$.

Kolda and Bader, "Tensor Decompositions and Applications", SIAM Review, 2009.

Murray+, "Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software", arXiv 2023

Pseudo-code: Basic

$>$ Compared to equations, it's more like coding.
\checkmark Assigning operation is usual: $a \leftarrow a+1$
$>$ Fonts
Can be used for function names
$\checkmark \not ¥ t e x t s c\{C l u s t e r i n g\}$ CLustering \checkmark ¥texttt\{Clustering\} Clustering

In Powerpoint, use
"Consolas" font. Like this.
> Several TeX packages https://www.overleaf.com/learn/latex/Algorithms

```
1: }i\leftarrow1
2: if }i\geq5\mathrm{ then
3: }\quadi\leftarrowi-
4: else
    if }i\leq3\mathrm{ then
        i\leftarrowi+2
    end if
end if
```

Algorithm 1: An algorithm with caption
Data: $n \geq 0$

Data: $n \geq 0$
Result: $y=x^{n}$
Result:
$y \leftarrow 1$;
$y \leftarrow 1 ;$
$X \leftarrow x ;$
$X \leftarrow x ;$
$N \leftarrow n ;$
while $N \neq 0$ do
if N is even the
if N is even then
$\quad X \leftarrow X \times X ;$
$N \leftarrow \frac{N}{2} ; / *$ This is a comment */
else
if N is odd then
$y \leftarrow y \times X ;$
end
end

Pseudo-code: Basic

> Again, consistency is important!
\checkmark © OK: $a \leftarrow a+1 \ldots b \leftarrow f(x)$
\checkmark NO!: $a \leftarrow a+1 \ldots b=f(x)$
$>$ You can mix a mathematical way and a coding way

$$
\checkmark x \leftarrow \frac{1}{\operatorname{Pop}(v)} \int_{0}^{a} f(\theta) d \theta
$$

$>$ Don't write too much! Pseudo-code should be simple.
$>$ Several styles
$>\boldsymbol{v}$.push_back (a), $\operatorname{Append}(\boldsymbol{v}, a), \boldsymbol{v} \leftarrow[\boldsymbol{v} \mid a]$
$>{ }^{\times x}$ Again, don't use italic for function: v.push_back(a)

Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 $>$ What do you want to express?

> Misc

What do you want to express?

$>$ The design of pseudo-code depends on what you want to express.
> Consider std::vector<int> arr in your code
$>$ If you use arr to represent a set of integers,
\checkmark You can use a set:
$\checkmark \mathcal{A} \leftarrow \emptyset$: initialization
$\checkmark \mathcal{A} \leftarrow \mathcal{A} \cup\{x\}:$ add
$\checkmark \mathcal{A} \leftarrow \mathcal{A} \backslash\{y\}:$ delete
$>$ If $O(1)$ access is important, or use it in a mathematical context, \checkmark You should use an array (vector)
$\checkmark \boldsymbol{a} \in \mathbb{R}^{D}$
$\checkmark \boldsymbol{a}[i]$ or a_{i} : Implies an $O(1)$ access.

Case study: Beam search for neighbor search

Algorithm 1. Search-on-Graph $(G, \mathbf{p}, \mathbf{q}, l)$	
Require: graph G, start node \mathbf{p}, query point \mathbf{q}, candidate pool size l	
Ensure: k nearest neighbors of \mathbf{q}	
1: $i=0$, candidate pool $S=\emptyset$	
2: S.add(p)	
3: while $i<l$ do	
4: $\quad i=$ the id of the first unchecked node p_{i} in S	
5: mark $\mathbf{p}_{\mathbf{i}}$ as checked	
6: for all neighbor \mathbf{n} of $\mathbf{p}_{\mathbf{i}}$ in G do	
7: if \mathbf{n} has not been visited then	
8: \quad S.add(n)	
9: end if	
10: end for	
11: sort S in ascending order of the distance to \mathbf{q}	
12: \quad if S s.size() $>l$ then	
13	S. resize (l) / / remove nodes from back of S to keep its
	size no larger than l
	end if
	nd while
	turn the first k nodes in S

```
Algorithm 1: GreedySearch \(\left(s, \times_{q}, k, L\right)\)
Data: Graph \(G\) with start node \(s\), query \(\mathrm{x}_{q}\), result
        size \(k\), search list size \(L \geq k\)
Result: Result set \(\mathcal{L}\) containing \(\bar{k}\)-approx NNs, and
        a set \(\mathcal{V}\) containing all the visited nodes
begin
    initialize sets \(\mathcal{L} \leftarrow\{s\}\) and \(\mathcal{V} \leftarrow \emptyset\)
    while \(\mathcal{L} \backslash \mathcal{V} \neq \emptyset\) do
        let \(p * \leftarrow \arg \min _{p \in \mathcal{L} \backslash \mathcal{V}}\left\|x_{p}-\mathrm{x}_{q}\right\|\)
        update \(\mathcal{L} \leftarrow \mathcal{L} \cup N_{\text {out }}\left(p^{*}\right)\) and
            \(\mathcal{V} \leftarrow \mathcal{V} \cup\left\{p^{*}\right\}\)
        if \(|\mathcal{L}|>L\) then
            update \(\mathcal{L}\) to retain closest \(L\)
                points to \(\mathrm{X}_{q}\)
    return [closest \(k\) points from \(\mathcal{L}\); \(\mathcal{V}\) ]
```

DiskANN [Subramanya+, NeurIPS 19]

Algorithm 1 Beam search
Data: graph G, query q, initial vertex v_{0}, output size k Initialization:
$\mathrm{V}=\left\{v_{0}\right\} / /$ a set of visited vertices
$\mathrm{H}=\left\{v_{0}: d\left(v_{0}, q\right)\right\} / /$ a heap of candidates while has runtime budget do
$v_{i}=\operatorname{SelectNearest}(\mathrm{H}, \mathrm{q})$
for $\hat{v} \in \operatorname{Expand}\left(v_{i}, G\right)$ do
if $\hat{v} \notin V$ then
$V:=\operatorname{Add}(V, \hat{v})$
$H:=\operatorname{Insert}(H, \hat{v}, d(\hat{v}, q))$
end
end
end
return $\operatorname{TopK}(\mathrm{V}, \mathrm{q}, \mathrm{k})$
Learning to route [Baranchuk+, ICML 19]

Case study: Beam search for neiahbor search

Candidates are stored in
Algor an array

Sort the array explicitly

Candidates are stored in

$\overline{\mathrm{A}} \overline{\mathrm{D}} \mathrm{a}$ a set

size k, search list size $L \geq k$
Result: Result 2 Let \mathcal{C} con aining k-approx NNs, and a set \mathcal{V} coutaining all the visited nodes
begin
initialize sets $\leftarrow\{s\}$ and $\mathcal{V} \leftarrow \emptyset$ while $\mathcal{L} \backslash \mathcal{V} \neq \emptyset$ do
let $p * \leftarrow \arg \min _{p \in \mathcal{L} \backslash \mathcal{V}}\left\|x_{p}-x_{q}\right\|$
update $\mathcal{L} \leftarrow \mathcal{L} \cup N_{\text {out }}\left(p^{*}\right)$ and
$\mathcal{V} \leftarrow \mathcal{V} \cup\left\{p^{*}\right\}$
if $|\mathcal{L}|>L$ then
update \mathcal{L} to retain closest L
$\frac{\left[\begin{array}{c}L \\ \text { points to } x_{q} \\ \text { return [closest } k \text { points from } \mathcal{L} ; \mathcal{V}]\end{array}\right.}{\text { DiskANN [Subramanyat, NeurIPS 19] }}$

Algorithm 1 Beam search
Data: graph G, query q, initial vertex v_{0}, output size k Initialization:
$\mathrm{V}=\left\{v_{0}\right\} / / \mathrm{a}$ set of visited vertices
$\mathrm{H}=\left\{v_{0}: d\left(v_{0}, q\right)\right\} / /$ a heap of candidates
while has runtime budget do
$v_{i}=\operatorname{SelectNearest}(\mathrm{H}, \mathrm{q})$
for $\hat{v} \in \operatorname{Expand}\left(v_{i}, G\right)$ do
if $\hat{v} \notin V$ then
$V:=\operatorname{Add}(V, \hat{v})$
$H:=\operatorname{Insert}(H, \hat{v}, d(\hat{\imath}$
end
end
end return $\operatorname{TopK}(\mathrm{V}, \mathrm{q}, \mathrm{k})$

1L 19]

Candidates are stored in a heap; automatically sorted aimost same aigoritnm
> Hint: Explicitly state the data structure or not

Case study: Beam search for neighbor search

Case study: Beam search for neighbor search

Algorithm 1: GreedySearch $\left(s, \mathrm{x}_{q}, k, L\right)$
Data: Graph G with start node s, query \times_{q}, result size k, search list size $L \geq k$
Result: Result set \mathcal{L} containing \bar{k}-approx NNs, and a set \mathcal{V} containing all the visited nodes
begin
initialize sets $\mathcal{L} \leftarrow\{s\}$ and $\mathcal{V} \leftarrow \emptyset$ while $\mathcal{L} \backslash \mathcal{V} \neq \emptyset$ do
let $p * \leftarrow \arg \min _{p \in \mathcal{L} \backslash \mathcal{V}}\left\|\times_{p}-\mathrm{x}_{q}\right\|$
update $\mathcal{L} \leftarrow \mathcal{L} \cup N_{\text {out }}\left(p^{*}\right)$ and
$\mathcal{V} \leftarrow \mathcal{V} \cup\left\{p^{*}\right\}$
if $|\mathcal{L}|>L$ then
update \mathcal{L} to retain closest L
points to X_{q}
return [closest k points from \mathcal{L}; \mathcal{V}]
DiskANN [Subramanya+, NeurIPS 19]

Visited item are simply said to be "visited"; implying an additional hidden data structure (array)
 Visited items are stored in a set

Case study: Beam search for neighbor search

Algorithm 1 Beam search
Data: graph G, query q, initial vertex v_{0}, output size k Initialization:
$\mathrm{V}=\left\{v_{0}\right\} / /$ a set of visited vertices
$\mathrm{H}=\left\{v_{0}: d\left(v_{0}, q\right)\right\} / /$ a heap of candidates
while has runtime budget do
$v_{i}=\operatorname{SelectNearest}(\mathrm{H}, \mathrm{q})$
for $\hat{v} \in \operatorname{Expand}\left(v_{i}, G\right)$ do
if $\hat{v} \notin V$ then
$V:=\operatorname{Add}(V, \hat{v})$
$H:=\operatorname{Insert}(H, \hat{v}, d(\hat{v}, q))$
end
end
end
return $\operatorname{TopK}(\mathrm{V}, \mathrm{q}, \mathrm{k})$
Learning to route [Baranchuk+, ICML 19]

NSG [Cong+, VLDB 19]
> All papers have totally different pseudo code for the almost same algorithm
> Hint: Explicitly state the data structure or not

Case study

function CSGVERTICES
Input: \mathcal{V}, \mathcal{F} : set of vertices and facets of input polyhedra
Output: \mathcal{V}_{f} : corresponding set of final output vertices
for F_{1} in \mathcal{F} do
for v in F_{1} do
if $\operatorname{isFinal} 1(v)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\{v\}$
end for
for F_{2} in \mathcal{F} do
$v_{1}, v_{2} \leftarrow \operatorname{INTERSECT} 2 \mathrm{FACETS}\left(F_{1}, F_{2}\right)$
if $\left\{v_{1}, v_{2}\right\}=\emptyset$ then continue F_{2} loop
if $\operatorname{ISFinal} 2\left(v_{1}\right)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\left\{v_{1}\right\}$
if isFinal2 $\left(v_{2}\right)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\left\{v_{2}\right\}$
for F_{3} in \mathcal{F} do
$v \leftarrow \operatorname{INTERSECTSEGMENTFACET}\left(v_{1}, v_{2}, F_{3}\right)$
if $v \neq \emptyset$ and $\operatorname{ISFinal} 3(v)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\{v\}$
end for
end for
end for
end function
\triangleright Enumerate input faces
\triangleright Order-1 candidates
\triangleright Order-2 candidates
\triangleright No intersection
\triangleright Order-3 candidates

Case study

Enumeration for a set

function CSGVERTICES

Comments

Input: \mathcal{V}, \mathcal{F} : set of ve es and facets of input polyhedra Output: \mathcal{V}_{f} : corresponding set of final output vertices for F_{1} in \hat{F} do
for v in F_{1} do
\quad if $\operatorname{ISFINAL} 1(v)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\{v\} \quad$ Set update
end for
for F_{2} in \mathcal{F} do
$v_{1}, v_{2} \leftarrow \mathrm{I}$ NTERSECT 2 FACETS $\left(F_{1}, F_{2}\right)$
If $\left\{v_{1}, v_{2}\right\}=\emptyset$ then continue F_{2} loop
if $\operatorname{sFinal} 2\left(v_{1}\right)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\left\{v_{1}\right\}$
if Final2 $\left(v_{2}\right)$ then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\left\{v_{2}\right\}$
in \mathcal{F} do $\begin{aligned} & \text { INTERSECTSEGMENTFACET }\left(v_{1}, v_{2}, F_{3}\right) .\end{aligned}$
\triangleright Order-2 candidates
\triangleright No intersection
\triangleright Order-3 candidates
end
(θ and ISFINAL3(v) then $\mathcal{V}_{f} \leftarrow \mathcal{V}_{f} \cup\{v\}$

$¥$ textsc for a function name

 end functReturning two variables
(This is often strange in a usual math, but it's ok in pseudo-codes)

OOP style?

```
Algorithm 2: Lookup( \(\mathcal{T}, k)\)
    Input: \(\mathcal{T}\) : the LIPP index, \(k\) : the lookup key
    Output: isFound: indicates whether \(k\) is found,
        \(e\) : the entry containing \(k\) if found
    begin
        \(n \leftarrow\) the root node of \(\mathcal{T}\);
        \(e \leftarrow n . \mathcal{E}[n . \mathcal{M}(k)]\);
        while type \((e)==N O D E\) do
            \(n \leftarrow\) the node pointed to from entry \(e\);
            \(e \leftarrow n . \mathcal{E}[n . \mathcal{M}(k)] ;\)
        if \(\operatorname{type}(e)==D A T A\) then
            \(k^{\prime} \leftarrow\) the key in entry \(e\);
            if \(k==k^{\prime}\) then
                return \(\langle\) True, e \(\rangle\);
        return \(\langle\) False, e \(\rangle\);
    end
```


Equations

> Basic notation for variables
$>$ String
$>$ Tips for sets
$>$ Inputs/outputs of functions
> Subscript/superscript
> Don't write numpy
> Misc

Pseudo codes
 > Basic
 What do you want to express?

> Misc

Misc

> Consider what are global variables!
> You can use a sentence to describe a difficult concept, e.g.,
$>\mathcal{J} \leftarrow$ Identifiers of top K smallest values of \boldsymbol{x}
$>\mathrm{T} \leftarrow\left(N_{1} \times N_{2} \times N_{3}\right)$ empty arrays of B-Trees.
> Intentionally, you can use almost-code style.

```
Algorithm 1 SimSiam Pseudocode, PyTorch-like
```

\# f : backbone + projection mlp
\# h: prediction mlp
for x in loader: \# load a minibatch x with n samples $\mathrm{x} 1, \mathrm{x} 2=\operatorname{aug}(\mathrm{x}), \operatorname{aug}(\mathrm{x})$ \# random augmentation
$\mathrm{z} 1, \mathrm{z} 2=\mathrm{f}(\mathrm{x} 1), \mathrm{f}(\mathrm{x} 2) \#$ projections, n -by-d z1, z2 $=\mathrm{f}(\mathrm{x} 1), \mathrm{f}(\mathrm{x} 2)$ \# projections, n-by-d p1, p2 = h(z1), h(z2) \# predictions, n-by-d
$L=D(p 1, z 2) / 2+D(p 2, z 1) / 2$ \# loss
L.backward() \# back-propagate update(f, h) \# SGD update
def $D(p, z)$: \# negative cosine similarity z = z.detach() \# stop gradient
$\mathrm{p}=$ normalize $(\mathrm{p}$, dim=1) \# 12-normalize $\mathrm{z}=$ normalize $(\mathrm{z}, \operatorname{dim}=1)$ \# 12-normalize return $-(p * z) . \operatorname{sum}(\operatorname{dim}=1)$. mean ()
> Their contribution is it's easy to implement the algorithm in PyTotch
> Complicated idea, such as "detach", can be explained in one line. But be careful! Can future readers understand?

Misc

> If you use almost-code style, use the minted package.

 $>$ https://www.overleaf.com/learn/latex/Code Highlighting with minted```
documentclass{article}
usepackage{minted}
\begin{document}
\begin{minted}{python}
import numpy as np
def incmatrix(genl1,genl2):
 m = len(genl1)
 n = len(genl2)
 M = None #to become the incidence matrix
 VT = np.zeros((n*m,1), int) #dummy variable
 compute the bitwise xor matrix
 M1 = bitxormatrix(genl1)
 M2 = np.triu(bitxormatrix(genl2),1)
 for i in range(m-1):
 for j in range(i+1, m)
 [r,c] = np.where(M2 == M1[i,j])
 for k in range(len(r)):
 VT[(i)*n + r[k]] = 1;
 VT[(i)*n + c[k]] = 1;
 vT[(j)*n + r[k]] = 1;
 VT[(j)*n + c[k]] = 1;
 if M is None:
 M = np.copy(VT)
 else:
 M = np.concatenate((M, VT), 1)
```

```
\usepackage\{minted\}
begin\{minted\}\{python\}
import numpy as np
def incmatrix(genl1,genl2):
= len(genl2)
\(\mathrm{M}=\) None \#to become the incidence matrix
\(\mathrm{V}=\mathrm{np} . \operatorname{zeros}\left(\left(\mathrm{n}^{*} \mathrm{~m}, 1\right)\right.\), int) \#dummy variable
compute the bitwise xor matrix
bitxormatrix(geni1)
M2 = np.triu(bitxormatrix(genl2),1)
for \(i\) in range \((m-1)\) :
[r, c
V[(\(\left.\mathrm{i}^{2}\right)_{\mathrm{n}}+\)
\(T[(i) * n+c[k]]=1\);
\(T[(j) * n+c[k]]=1 ;\)
if \(M\) is None:
\(M=n p . \operatorname{copy}(V T)\)
\(\mathrm{M}=\mathrm{np} . \operatorname{concatenate}((\mathrm{M}, \mathrm{VT}), 1)\)
```

            VT[(i)*n+ [r]]]-1
    ```
```

import numpy as np

```
import numpy as np
def incmatrix(genl1,genl2):
def incmatrix(genl1,genl2):
 m = len(genl1)
 m = len(genl1)
 n = len(genl2)
 n = len(genl2)
 M = None #to become the incidence matrix
 M = None #to become the incidence matrix
 VT = np.zeros((n*m,1), int) #dummy variable
 VT = np.zeros((n*m,1), int) #dummy variable
 #compute the bitwise xor matrix
 #compute the bitwise xor matrix
 M1 = bitxormatrix(genl1)
 M1 = bitxormatrix(genl1)
 M2 = np.triu(bitxormatrix(genl2),1)
 M2 = np.triu(bitxormatrix(genl2),1)
 for i in range(m-1):
 for i in range(m-1):
 for j in range(i+1,m):
 for j in range(i+1,m):
 [r,c] = np.where(M2 == M1 [i,j])
 [r,c] = np.where(M2 == M1 [i,j])
 for k in range(len(r)):
 for k in range(len(r)):
 VT[(i)*n + r [k]] = 1;
 VT[(i)*n + r [k]] = 1;
 VT[(i)*n + c[k]] = 1;
 VT[(i)*n + c[k]] = 1;
 VT[(j)*n + r[k]] = 1;
```

            VT[(j)*n + r[k]] = 1;
    ```

\section*{Schedule}
\begin{tabular}{|c|c|c|}
\hline Date (2024) & Contents & Presented by \\
\hline Week 1, Apr 10 & Introduction. Review of fundamental concepts & Yusuke, Koya, Yuki, Jum \\
\hline Week 2, Apr 17 & Equations and pseudo-codes & Yusuke Matsui \\
\hline Week 3, Apr 24 & Presentation & Koya Narumi \\
\hline Week 4, May 1 & Tables and plots & Yusuke Matsui \\
\hline Week 5, May 8 & Figures & Koya Narumi \\
\hline Week 6, May 22 & Videos & Koya Narumi \\
\hline Week 7, May 29 & Invited Talk 1 & Dr. Yoshiaki Bando (AIST) \\
\hline Week 8, June 5 & Invited Talk 2 & Prof. Katie Seaborn (Tokyo Tech) \\
\hline Week 9, June 12 & GitHub in depth & Yusuke Matsui \\
\hline Week 10, June 19 & Automation of research and research dissemination (Web, Cloud, CI/CD) & Jun Kato () \\
\hline Week 11, June 26 & Research community & Jun Kato (\\
\hline Week 12, July 3 & 3DCG illustrations & Yuki Koyama \\
\hline Week 13, July 10 & Final presentations & - \\
\hline
\end{tabular}```

